Growth and Income Inequality in an Endogenous Growth Model with Public Capital under Progressive Taxation

Murat Koyuncu Alper Ünsal

Bogazici University

CEE Annual Conference - May 17, 2016
Exploiting the Public Capital-Inequality Link

2 The recent literature on the economic growth effects of public capital suggests various ways of solving this problem. Some of the earlier studies have also been criticized for not taking the stationarity of the data properly into account (see, for instance, Sturm and de Haan 1995). Unit root tests often suggest that output and public capital contain a unit root. However, it is well known that unit root tests have low power to discriminate between unit root and near unit root processes. This problem is especially pronounced for small samples. One way to alleviate the small-sample problem that has become popular in recent research is to make use of the cross-sectional dimension of the data and to apply panel data techniques.

Figure 1. Government investment in 22 OECD countries, 1961-2001, average (% GDP) and standard deviation

In some of the earlier studies unit roots in GDP and capital stock were removed by taking first differences. But this may ignore evidence of a long-run relationship in the data if the series are cointegrated (Munnell 1992). Indeed, various recent studies report evidence for such a cointegrating relationship between public capital (or infrastructure) and output. By exploiting this cointegrating relationship, these studies estimate the long-run effect of public capital (or infrastructure) on GDP per capita. However, the existence of a cointegrating relationship in itself does not necessarily imply that causality runs from infrastructure to long-run growth (Canning and Pedroni 1999).

In their survey of the earlier literature, Sturm et al. (1998) show that the literature contained a relatively wide range of estimates, with a marginal product of public capital that is much higher than that of private capital (e.g., Aschauer 1989), roughly equal to that of private capital (e.g., Munnell 1990b). Early estimates for the impact of public capital on economic growth cover a wide range—making them almost useless from a policy perspective. The problem not only occurs in studies like that of Aschauer (1989), but also in studies based on panel data, like Munnell (1990b), who found positive elasticities of output to public capital using panel data at the US state level. According to Holtz-Eakin (1994, p. 13), “[b]ecause more prosperous states are likely to spend more on public capital, there will be a positive correlation between the state-specific effects and public sector capital. This should not be confused, however, with the notion that greater public capital leads a state to be more productive.”
Motivation

Exploring the Public Capital-Inequality Link

Exploring the Public Capital-Inequality Link
Motivation

Exploring the Public Capital-Inequality Link

Figure: Changes in Gini coefficients in OECD countries, 1985 and 2008. Source: OECD (2011)
Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!”, Piketty, IMF (2011, 2014).
Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!” , Piketty, IMF (2011, 2014).
- Heterogeneous agent methodology within complete asset markets framework flourished since Chatterjee (1994) and Caselli and Ventura (2000):
Motivation

Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!”, Piketty, IMF (2011, 2014).
- Heterogeneous agent methodology within complete asset markets framework flourished since Chatterjee (1994) and Caselli and Ventura (2000):
 - Heterogeneity in tastes, skills, and initial wealth of consumers
Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!”, Piketty, IMF (2011, 2014).
- Heterogeneous agent methodology within complete asset markets framework flourished since Chatterjee (1994) and Caselli and Ventura (2000):
 - Heterogeneity in tastes, skills, and initial wealth of consumers
 - Can be solved analytically
Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!”, Piketty, IMF (2011, 2014).
- Heterogeneous agent methodology within complete asset markets framework flourished since Chatterjee (1994) and Caselli and Ventura (2000):
 - Heterogeneity in tastes, skills, and initial wealth of consumers
 - Can be solved analytically
 - Mean behavior of the heterogeneous agents identical to the representative agent
Motivation

Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!”, Piketty, IMF (2011, 2014).
- Heterogeneous agent methodology within complete asset markets framework flourished since Chatterjee (1994) and Caselli and Ventura (2000):
 - Heterogeneity in tastes, skills, and initial wealth of consumers
 - Can be solved analytically
 - Mean behavior of the heterogeneous agents identical to the representative agent
Extending the Representative Agent Framework

- Growth-inequality relationship receives increasing attention, e.g. “We are the 99 percent!”, Piketty, IMF (2011, 2014).
- Heterogeneous agent methodology within complete asset markets framework flourished since Chatterjee (1994) and Caselli and Ventura (2000):
 - Heterogeneity in tastes, skills, and initial wealth of consumers
 - Can be solved analytically
 - Mean behavior of the heterogeneous agents identical to the representative agent
Introducing Progressive Taxation
Introducing Progressive Taxation

- Most tax systems are progressive
Introducing Progressive Taxation

- Most tax systems are progressive
- “Progressive taxation is a tax schedule that decreases income inequality for any given pre-tax distribution” - Principle of progressivity (Mitra and Ok, 1997)
Introducing Progressive Taxation

- Most tax systems are progressive
- “Progressive taxation is a tax schedule that decreases income inequality for any given pre-tax distribution" - Principle of progressivity (Mitra and Ok, 1997)
- Empirical evidence suggest that degree of progressivity has a negative effect on growth (Padovano and Galli, 2002) and on average labor supply (Hausman, 1981a,b; Blomquist, 1983)
Introducing Progressive Taxation

- Most tax systems are progressive
- “Progressive taxation is a tax schedule that decreases income inequality for any given pre-tax distribution" - Principle of progressivity (Mitra and Ok, 1997)
- Empirical evidence suggest that degree of progressivity has a negative effect on growth (Padovano and Galli, 2002) and on average labor supply (Hausman, 1981a,b; Blomquist, 1983)
- Flat tax reform proposals (Hall and Rabushka, 1985; all Republican candidates, 2011; Trump tax plan, 2016)
Introducing Progressive Taxation

- Most tax systems are progressive
- “Progressive taxation is a tax schedule that decreases income inequality for any given pre-tax distribution” - Principle of progressivity (Mitra and Ok, 1997)
- Empirical evidence suggest that degree of progressivity has a negative effect on growth (Padovano and Galli, 2002) and on average labor supply (Hausman, 1981a,b; Blomquist, 1983)
- Flat tax reform proposals (Hall and Rabushka, 1985; all Republican candidates, 2011; Trump tax plan, 2016)
- Progressive tax systems are approximated by one proportional tax rate in representative agent models
Introducing Progressive Taxation

- Most tax systems are progressive
- “Progressive taxation is a tax schedule that decreases income inequality for any given pre-tax distribution” - Principle of progressivity (Mitra and Ok, 1997)
- Empirical evidence suggest that degree of progressivity has a negative effect on growth (Padovano and Galli, 2002) and on average labor supply (Hausman, 1981a,b; Blomquist, 1983)
- Flat tax reform proposals (Hall and Rabushka, 1985; all Republican candidates, 2011; Trump tax plan, 2016)
- Progressive tax systems are approximated by one proportional tax rate in representative agent models
Heterogeneous Agents with Different Rates of Impatience
Heterogeneous Agents with Different Rates of Impatience

Ramsey (1928):
Heterogeneous Agents with Different Rates of Impatience

- Ramsey (1928):
 - Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
Heterogeneous Agents with Different Rates of Impatience

- Ramsey (1928):
 - Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
 - Conjectured that all the capital would be held by the least impatient household (Formalized by Becker (1980) and Bewley (1982)).
Heterogeneous Agents with Different Rates of Impatience

- Ramsey (1928):
 - Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
 - Conjectured that all the capital would be held by the least impatient household (Formalized by Becker (1980) and Bewley (1982)).

- Models with progressive taxation:
 - Sarle (1997), Sorger (2002) and Li and Sarle (2004): Distribution of wealth (and income) would be non-degenerate under progressive taxation (with exogenous labor).
 - Carroll and Young (2009): Additional heterogeneity in skills, focus on labor income-asset income correlation.
 - Bosi and Seegmuller (2010): Elastic labor. Borrowing constraints. Focus on an SS where only the most patient HH holds capital and they may not supply labor.
 - Koyuncu and Turnovsky (2016): Elastic labor. Shows how the labor supply responses of different classes may differ under progressive taxes.
Heterogeneous Agents with Different Rates of Impatience

- Ramsey (1928):
 - Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
 - Conjectured that all the capital would be held by the least impatient household (Formalized by Becker (1980) and Bewley (1982))

- Models with progressive taxation:
 - Sarte (1997), Sorger (2002) and Li and Sarte (2004): Distribution of wealth (and income) would be non-degenerate under progressive taxation (with *exogenous labor*).
Heterogeneous Agents with Different Rates of Impatience

- Ramsey (1928):
 ▶ Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
 ▶ Conjectured that all the capital would be held by the least impatient household (Formalized by Becker (1980) and Bewley (1982))

- Models with progressive taxation:
 ▶ Sarte (1997), Sorger (2002) and Li and Sarte (2004): Distribution of wealth (and income) would be non-degenerate under progressive taxation (with \textit{exogenous labor}).
 ▶ Carroll and Young (2009): Additional heterogeneity in skills, focus on labor income-asset income correlation.
Heterogeneous Agents with Different Rates of Impatience

- Ramsey (1928):
 - Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
 - Conjectured that all the capital would be held by the least impatient household (Formalized by Becker (1980) and Bewley (1982))

- Models with progressive taxation:
 - Sarte (1997), Sorger (2002) and Li and Sarte (2004): Distribution of wealth (and income) would be non-degenerate under progressive taxation (with *exogenous labor*).
 - Carroll and Young (2009): Additional heterogeneity in skills, focus on labor income-asset income correlation.
 - Bosi and Seegmuller (2010): Elastic labor. Borrowing constraints. Focus on a SS where only the most patient HH holds capital and they may not supply labor.
Heterogeneous Agents with Different Rates of Impatience

- **Ramsey (1928):**
 - Formulated a model of stationary equilibrium with heterogeneous agents differentiated by their rates of time preference.
 - Conjectured that all the capital would be held by the least impatient household (Formalized by Becker (1980) and Bewley (1982)).

- **Models with progressive taxation:**
 - Sarte (1997), Sorger (2002) and Li and Sarte (2004): Distribution of wealth (and income) would be non-degenerate under progressive taxation (with *exogenous labor*).
 - Carroll and Young (2009): Additional heterogeneity in skills, focus on labor income-asset income correlation.
 - Bosi and Seegmuller (2010): Elastic labor. Borrowing constraints. Focus on a SS where only the most patient HH holds capital and they may not supply labor.
 - Koyuncu and Turnovsky (2016): Elastic labor. Shows how the labor supply responses of different classes may differ under progressive taxes.
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
- Barro (1990): Seminal representative agent/endogenous growth model with public capital. A stream of papers followed:
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
- Barro (1990): Seminal representative agent/endogenous growth model with public capital. A stream of papers followed:
- Futagami et al. (1993): role of productive public capital stock vs public expenditure
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
- Barro (1990): Seminal representative agent/endogenous growth model with public capital. A stream of papers followed:
 - Futagami et al. (1993): role of productive public capital stock vs public expenditure
 - Eicher and Turnovsky (2000); Ott and Turnovsky (2006): Partially rival and excludable public expenditure
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
- Barro (1990): Seminal representative agent/endogenous growth model with public capital. A stream of papers followed:
 - Futagami et al. (1993): role of productive public capital stock vs public expenditure
 - Eicher and Turnovsky (2000); Ott and Turnovsky (2006): Partially rival and excludable public expenditure
 - Devarajan et al. (1996); Agenor and Neanidis (2011): Different types of productive public expenditures
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
- Barro (1990): Seminal representative agent/endogenous growth model with public capital. A stream of papers followed:
 - Futagami et al. (1993): role of productive public capital stock vs public expenditure
 - Eicher and Turnovsky (2000); Ott and Turnovsky (2006): Partially rival and excludable public expenditure
 - Devarajan et al. (1996); Agenor and Neanidis (2011): Different types of productive public expenditures
 - Glomm and Ravikumar (1997); Kneller et al. (1999): Distinction between productive and non–productive spending
A brief review on productive public expenditure literature

- Aschauer (1989): Empirically shows that non-military public capital investments have positive effects on growth.
- Barro (1990): Seminal representative agent/endogenous growth model with public capital. A stream of papers followed:
 - Futagami et al. (1993): role of productive public capital stock vs public expenditure
 - Eicher and Turnovsky (2000); Ott and Turnovsky (2006): Partially rival and excludable public expenditure
 - Devarajan et al. (1996); Agenor and Neanidis (2011): Different types of productive public expenditures
 - Glomm and Ravikumar (1997); Kneller et al. (1999): Distinction between productive and non–productive spending
- **Chatterjee and Turnovsky (2012):** Only heterogeneous agent model with public capital. Shows higher public investment worsens inequality. Considers flat taxation.
What this paper adds to the literature

- Higher public investments \(\Rightarrow \) Higher inequality and growth rates.
- Higher tax progressivity \(\Rightarrow \) Lower inequality and growth rates.

Combination of the two to discuss policy options to reduce inequality without harming growth.

Different levels of progressivity on capital and labor income to make a deeper analysis and to make comparisons with other cases.

Simultaneous determination of aggregate and distributional variables enables a more realistic analysis.

Koyuncu and Ünsal (BU)
Progressivity, Infrastructure, Growth & In
CEE - May 17, 2016 8 / 31
What this paper adds to the literature

- Higher public investments \(\Rightarrow\) Higher inequality and growth rates.
- Higher tax progressivity \(\Rightarrow\) Lower inequality and growth rates.
What this paper adds to the literature

- Higher public investments \Rightarrow Higher inequality and growth rates.
- Higher tax progressivity \Rightarrow Lower inequality and growth rates.
- Combination of the two to discuss fiscal policy options to reduce inequality without harming growth.
What this paper adds to the literature

- Higher public investments \Rightarrow Higher inequality and growth rates.
- Higher tax progressivity \Rightarrow Lower inequality and growth rates.
- Combination of the two to discuss fiscal policy options to reduce inequality without harming growth.
- Different levels of progressivity on capital and labor income to make a deeper analysis and to make comparisons with flat tax cases.
What this paper adds to the literature

Higher public investments ⇒ Higher inequality and growth rates.

Higher tax progressivity ⇒ Lower inequality and growth rates.

Combination of the two to discuss fiscal policy options to reduce inequality without harming growth.

Different levels of progressivity on capital and labor income to make a deeper analysis and to make comparisons with flat tax cases.

Simultaneous determination of aggregate and distributional variables enables a more realistic analysis.
Chatterjee and Turnovsky (2012): Identical firms produce output according to

\[Y_j = A\left[\alpha(X_P L_j)^{-\rho} + (1 - \alpha)K_j^{-\rho}\right]^{-\frac{1}{\rho}} \]

\[X_P = K^\varepsilon K_G^{1-\varepsilon}, \ 0 \leq \varepsilon \leq 1 \]

\(s \equiv 1/(1 + \rho) \) represents the elasticity of substitution in production between capital and effective units of labor.

Equations per aggregate private capital:

\[y \equiv y(z, \ell) = A\left[(1 - \alpha) + \alpha\{(1 - \ell)z^{1-\varepsilon}\}^{-\rho}\right]^{-\frac{1}{\rho}}; \ \ell = 1 - L \]

\[r \equiv r(z, \ell) = (1 - \alpha)A^{-\rho}y(z, \ell)^{1+\rho} \]

\[w = \omega(z, \ell)K; \ \omega(z, \ell) \equiv \alpha A^{-\rho}y(z, \ell)^{1+\rho}z^{-\rho(1-\varepsilon)}(1 - \ell)^{-(1+\rho)} \]

The ratio of public to private capital: \(z = K_G/K \)
Preferences

- A unit mass of a continuum of infinitely-lived consumers, indexed by i, heterogenous in their rates of time preference, β_i.

\[U_i = \int_0^\infty \frac{1}{\gamma} [C_i^{-\nu} + \theta(X_U \ell_i)^{-\nu}]^{-\frac{\gamma}{\nu}} e^{-\beta_i t} \, dt \]

\[X_U = K^{\varphi} K^{1-\varphi}_G, \quad 0 \leq \varphi \leq 1 \]

- $q \equiv 1/(1 + \nu)$: the intra-temporal elasticity of substitution between consumption and leisure.

- $e \equiv 1/(1 - \gamma)$: the inter-temporal elasticity of substitution.
Tax Schedule

- Following Guo and Lansing (1998); progressive tax rates on capital income $\tau_{k,i}$ where ϕ_k measures progressivity

\[\tau_{k,i} = \zeta_k \left(\frac{rK_i}{rK} \right)^{\phi_k} = \zeta_k \left(\frac{K_i}{K} \right)^{\phi_k} \]

- Progressive tax rates on labor income: $\tau_{w,i}$ where ϕ_w measures progressivity

\[\tau_{w,i} = \zeta_w \left(\frac{w(1 - \ell_i)}{w(1 - \ell)} \right)^{\phi_w} = \zeta_w \left(\frac{1 - \ell_i}{1 - \ell} \right)^{\phi_w} \]

- Flat tax rate on consumption: τ_c

- Endogenously determined lump-sum tax rates (or subsidies) to equalize the target government investment rate: τ
Households’ Utility Maximization

- The budget constraint of the agent i:

$$\dot{K}_i = (1 - \tau_{k,i})rK_i + (1 - \tau_{w,i})w(1 - \ell_i) - (1 + \tau_c)C_i - T$$

- Individual i’s consumption per aggregate capital:

$$c_i \equiv \frac{C_i}{K} = \ell_i \Omega_i(\ell_i, \ell, z)$$

$$\Omega_i(\ell_i, \ell, z) \equiv \left[\frac{\omega z^{\nu(1-\varphi)}}{\theta (1 + \tau_c)} \right]^{\frac{1}{1+\nu}} \left(1 - \tau_{w,i}^m \right)^{\frac{1}{1+\nu}}$$

- TVC \Rightarrow The upper limit for the private capital accumulation:

$$\frac{\dot{K}_i}{K_i} < r(1 - \tau_{k,i})$$
The flow equation for financing public investments, G:

$$\dot{K}_G = gY = G$$

$$G = r \int [\tau_k, iK_i] di + w \int [\tau_w, i(1 - \ell_i)] di + \tau_c C + \tau Y$$

$$gy = \frac{\dot{K}_G}{K} = r \bar{\tau}_k + \omega \bar{\tau}_w (1 - \ell) + \tau_c \bar{\Omega} \ell + \tau y$$
Equations for the evolution of the economy

- Growth rate of the aggregate wealth:

\[
\frac{\dot{K}}{K} = (1 - g) y(z, l) - \bar{\Omega}(z, \ell, \ell_1, \ldots, \ell_N) \ell
\]

- Evolution of relative wealth:

\[
\dot{k}_i = k_i \left(\frac{\dot{K}_i}{K_i} - \frac{\dot{K}}{K} \right) = \left[(1 - \tau_{w,i}) \omega(1 - \ell_i) - (1 + \tau_c) \ell_i \Omega_i - \tau y \right]
\]
\[
- \left[(\tau_{k,i} - \bar{\tau}_k) r + (1 - \bar{\tau}_w) \omega(1 - \ell) - (1 + \tau_c) \bar{\Omega} \ell - \tau y \right] k_i ; \quad k_i \equiv \frac{K_i}{K}
\]

- The flow equation for public investment:

\[
\frac{\dot{z}}{z} = \frac{\dot{K}_G}{K_G} - \frac{\dot{K}}{K} = \frac{gy(z, \ell)}{z} - [(1 - g)y(z, \ell) - \bar{\Omega} \ell]
\]
Equations for the evolution of the economy

- The evolution of time devoted to leisure:

\[
\frac{\dot{\ell}_i}{\ell_i} = \frac{\beta_i - r(1 - \tau_{k,i}) - (\gamma - 1) \frac{\dot{K}}{K} - \Gamma_{N,i}(\ell_i, \ell, z) \frac{\dot{\ell}}{\ell} - \Gamma_{O,i}(\ell_i, \ell, z) \frac{\dot{z}}{z}}{\Gamma_{M,i}(\ell_i, \ell, z)}
\]

\[
\frac{\dot{\ell}}{\ell} = \frac{\int \frac{\ell_i E_i}{\Gamma_{M,i}} \, di}{\ell + \int \frac{\ell_i \Gamma_{N,i}}{\Gamma_{M,i}} \, di}
\]

where

\[
E_i = \beta_i - r(1 - \tau_{k,i}) - (\gamma - 1) \frac{\dot{K}}{K} - \Gamma_{O,i} \frac{\dot{z}}{z}
\]
Steady state equations

- The balanced growth path of the economy: \(\ell_i = \ell = \dot{z} = \dot{k}_i = 0 \)
- The growth rate of aggregate and individual-specific wealth:
 \[
 \tilde{\psi}_i = \tilde{\psi} = \frac{\beta_i - r(\tilde{z}, \tilde{\ell})(1 - \tau_{k,i})}{\gamma - 1} = \frac{gy(\tilde{z}, \tilde{\ell})}{\tilde{z}}
 \]
- Steady state relative wealth of the individual \(i \):
 \[
 \tilde{k}_i = \left[\frac{(\gamma - 1)gy(\tilde{z}, \tilde{\ell})/\tilde{z} + r(\tilde{z}, \tilde{\ell}) - \beta_i}{r(\tilde{z}, \tilde{\ell})(1 + \phi_k)\zeta_k} \right]^{\frac{1}{\phi_k}}
 \]
Steady state equations

- The relationship between individual’s wealth and labor supply decision:

\[
\left[\frac{gy(z, \ell)}{z} - r(1 - \tau_{k,i}) \right] (k_i - 1) + r(\tau_{k,i} - \bar{\tau}_k) = \omega \left[(\ell - \ell_i) + (1 - \ell)\bar{\tau}_w - (1 - \ell_i)\tau_{w,i} \right] + (1 + \tau_c)(\bar{\Omega}\ell - \Omega_i\ell_i)
\]

- \(k_i > 1 \iff \ell_i > \ell \)
Numerical analysis: General properties

- Numerical analyses for the 5-agent case.
- Comparison of the results with the base model in Chatterjee-Turnovsky (2012).
- Introducing government investment shocks using different tax policies.
- Repeating the shock scenarios for different levels of tax progressivity.
- Transition path analyses to investigate the saddle-path stability of the economy and the SR/LR responses of the economy to the shocks.
Benchmark calibration

Table: Parameter values for the benchmark economy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e = 1/(1 - \gamma)$</td>
<td>Inter-temporal elasticity of substitution</td>
<td>0.4</td>
</tr>
<tr>
<td>θ</td>
<td>The relative weight of leisure in utility</td>
<td>1.75</td>
</tr>
<tr>
<td>$q = 1/(1 + \nu)$</td>
<td>Intra-temporal elasticity of substitution between consumption and leisure in the utility function</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Technology shift parameter</td>
<td>0.6</td>
</tr>
<tr>
<td>α</td>
<td>Share of efficiency units of labor</td>
<td>0.6</td>
</tr>
<tr>
<td>$s = 1/(1 + \rho)$</td>
<td>Elasticity of substitution in production between capital and effective units of labor</td>
<td>1</td>
</tr>
<tr>
<td>ε, φ</td>
<td>Geometric weight of the aggregate private capital in the aggregate composite externalities</td>
<td>0.6</td>
</tr>
<tr>
<td>β_i</td>
<td>Rates of time preference</td>
<td>0.036, 0.038, 0.040, 0.042, 0.044</td>
</tr>
</tbody>
</table>
Benchmark calibration

Table: Benchmark calibrations

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>Level of tax schedule</th>
<th>Tax progressivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>This paper</td>
<td>0.05</td>
<td>$\zeta_k = 0.05; \zeta_w = 0.05$</td>
<td>$\phi_k = 0.75; \phi_w = -0.75$</td>
</tr>
<tr>
<td>CT2012</td>
<td>0.05</td>
<td>$\tau = 0.05$</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table: Steady state values for the benchmark economies

<table>
<thead>
<tr>
<th>Policy</th>
<th>\tilde{z}</th>
<th>$\tilde{\ell}$</th>
<th>\tilde{y}</th>
<th>$\tilde{\psi}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This paper</td>
<td>0.611</td>
<td>0.719</td>
<td>0.249</td>
<td>2.04</td>
</tr>
<tr>
<td>CT2012</td>
<td>0.531</td>
<td>0.714</td>
<td>0.243</td>
<td>2.29</td>
</tr>
</tbody>
</table>
Long run responses to various fiscal policy shocks - Growth effects

Table: Steady state growth rates (%) after each shock

<table>
<thead>
<tr>
<th>Benchmark case</th>
<th>Combined income tax financed</th>
<th>Consumption tax financed</th>
<th>Lump-sum tax financed</th>
<th>Capital income tax financed</th>
<th>Labor income tax financed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g = 0.05$</td>
<td>$g = 0.08$</td>
</tr>
<tr>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0.0363$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
</tr>
<tr>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.08$</td>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.125$</td>
<td>$\zeta_k = 0.05$</td>
</tr>
<tr>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.08$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.1$</td>
</tr>
<tr>
<td>$(0.5,-0.5)$</td>
<td>2.06</td>
<td>2.33</td>
<td>2.44</td>
<td>2.50</td>
<td>2.13</td>
</tr>
<tr>
<td>$(0.75,-0.75)$</td>
<td>2.04</td>
<td>2.29</td>
<td>2.41</td>
<td>2.48</td>
<td>2.04</td>
</tr>
<tr>
<td>$(1.125,-1.125)$</td>
<td>2.00</td>
<td>2.23</td>
<td>2.38</td>
<td>2.43</td>
<td>1.92</td>
</tr>
<tr>
<td>$(0.5,0.5)$</td>
<td>2.00</td>
<td>2.20</td>
<td>2.36</td>
<td>2.42</td>
<td>2.06</td>
</tr>
<tr>
<td>$(0.75,0.75)$</td>
<td>1.93</td>
<td>2.10</td>
<td>2.29</td>
<td>2.35</td>
<td>1.94</td>
</tr>
<tr>
<td>$(1.125,1.125)$</td>
<td>1.85</td>
<td>1.96</td>
<td>2.20</td>
<td>2.25</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Long run responses to various fiscal policy shocks - Size of the public capital to private capital ratios

Table: Steady state size of the public-private capital ratio, z

<table>
<thead>
<tr>
<th>(ϕ_k, ϕ_w)</th>
<th>benchmark case</th>
<th>combined income tax financed</th>
<th>consumption tax financed</th>
<th>lump-sum tax financed</th>
<th>capital income tax financed</th>
<th>labor income tax financed</th>
</tr>
</thead>
<tbody>
<tr>
<td>g = 0.05</td>
<td>g = 0.08</td>
</tr>
<tr>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0.0363$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
<td>$\tau_c = 0$</td>
</tr>
<tr>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.08$</td>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.05$</td>
<td>$\zeta_k = 0.125$</td>
<td>$\zeta_k = 0.05$</td>
</tr>
<tr>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.08$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.05$</td>
<td>$\zeta_w = 0.1$</td>
</tr>
<tr>
<td>(0.5,-0.5)</td>
<td>0.596</td>
<td>0.956</td>
<td>0.890</td>
<td>0.883</td>
<td>1.075</td>
<td>0.888</td>
</tr>
<tr>
<td>(0.75,-0.75)</td>
<td>0.611</td>
<td>0.987</td>
<td>0.910</td>
<td>0.901</td>
<td>1.141</td>
<td>0.905</td>
</tr>
<tr>
<td>(1.125,-1.125)</td>
<td>0.629</td>
<td>1.036</td>
<td>0.937</td>
<td>0.928</td>
<td>1.251</td>
<td>0.926</td>
</tr>
<tr>
<td>(0.5,0.5)</td>
<td>0.605</td>
<td>0.978</td>
<td>0.902</td>
<td>0.894</td>
<td>1.091</td>
<td>0.912</td>
</tr>
<tr>
<td>(0.75,0.75)</td>
<td>0.625</td>
<td>1.024</td>
<td>0.929</td>
<td>0.920</td>
<td>1.166</td>
<td>0.945</td>
</tr>
<tr>
<td>(1.125,1.125)</td>
<td>0.653</td>
<td>1.094</td>
<td>0.966</td>
<td>0.957</td>
<td>1.295</td>
<td>0.992</td>
</tr>
</tbody>
</table>
Long run responses to various fiscal policy shocks - Income distribution

Table: Steady state income distributions after each shock (in terms of coefficients of variation)

<table>
<thead>
<tr>
<th>(φ_k, φ_w)</th>
<th>benchmark case</th>
<th>combined income tax financed</th>
<th>consumption tax financed</th>
<th>lump-sum tax financed</th>
<th>capital income tax financed</th>
<th>labor income tax financed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5,0.5)</td>
<td>16.79</td>
<td>10.00</td>
<td>15.65</td>
<td>15.58</td>
<td>5.54</td>
<td>17.13</td>
</tr>
<tr>
<td>(0.75,0.75)</td>
<td>10.19</td>
<td>5.89</td>
<td>9.42</td>
<td>9.36</td>
<td>3.10</td>
<td>10.64</td>
</tr>
<tr>
<td>(1.125,1.125)</td>
<td>5.81</td>
<td>3.37</td>
<td>5.37</td>
<td>5.31</td>
<td>1.65</td>
<td>6.37</td>
</tr>
<tr>
<td>(0.5,0.5)</td>
<td>15.70</td>
<td>8.99</td>
<td>14.69</td>
<td>14.64</td>
<td>5.20</td>
<td>14.91</td>
</tr>
<tr>
<td>(0.75,0.75)</td>
<td>9.23</td>
<td>5.05</td>
<td>8.58</td>
<td>8.52</td>
<td>2.81</td>
<td>8.70</td>
</tr>
<tr>
<td>(1.125,1.125)</td>
<td>5.02</td>
<td>2.67</td>
<td>4.65</td>
<td>4.64</td>
<td>1.42</td>
<td>4.78</td>
</tr>
<tr>
<td>(0.5,0.5)</td>
<td>16.79</td>
<td>10.00</td>
<td>15.65</td>
<td>15.58</td>
<td>5.54</td>
<td>17.13</td>
</tr>
<tr>
<td>(0.75,0.75)</td>
<td>10.19</td>
<td>5.89</td>
<td>9.42</td>
<td>9.36</td>
<td>3.10</td>
<td>10.64</td>
</tr>
<tr>
<td>(1.125,1.125)</td>
<td>5.81</td>
<td>3.37</td>
<td>5.37</td>
<td>5.31</td>
<td>1.65</td>
<td>6.37</td>
</tr>
</tbody>
</table>
Long run responses to various fiscal policy shocks - Welfare distribution

Table: Steady state welfare distributions after each shock (in terms of coefficients of variation)

<table>
<thead>
<tr>
<th>(φ_κ, φ_ω)</th>
<th>benchmark case</th>
<th>combined income tax financed</th>
<th>consumption tax financed</th>
<th>lump-sum tax financed</th>
<th>capital income tax financed</th>
<th>labor income tax financed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g = 0.05</td>
<td>g = 0.08</td>
</tr>
<tr>
<td></td>
<td>τ_κ = 0</td>
<td>τ_κ = 0</td>
<td>τ_κ = 0.0363</td>
<td>τ_κ = 0</td>
<td>τ_κ = 0</td>
<td>τ_κ = 0</td>
</tr>
<tr>
<td></td>
<td>ζ_κ = 0.05</td>
<td>ζ_κ = 0.08</td>
<td>ζ_κ = 0.05</td>
<td>ζ_κ = 0.05</td>
<td>ζ_κ = 0.125</td>
<td>ζ_κ = 0.05</td>
</tr>
<tr>
<td></td>
<td>ζ_ω = 0.05</td>
<td>ζ_ω = 0.08</td>
<td>ζ_ω = 0.05</td>
<td>ζ_ω = 0.05</td>
<td>ζ_ω = 0.05</td>
<td>ζ_ω = 0.1</td>
</tr>
<tr>
<td>(0.5,-0.5)</td>
<td>26.85</td>
<td>14.94</td>
<td>24.21</td>
<td>24.72</td>
<td>8.66</td>
<td>24.97</td>
</tr>
<tr>
<td>(0.75,-0.75)</td>
<td>15.58</td>
<td>8.32</td>
<td>13.93</td>
<td>14.27</td>
<td>4.70</td>
<td>14.32</td>
</tr>
<tr>
<td>(1.125,-1.125)</td>
<td>8.37</td>
<td>4.32</td>
<td>7.47</td>
<td>7.63</td>
<td>2.37</td>
<td>7.61</td>
</tr>
<tr>
<td>(0.5,0.5)</td>
<td>27.32</td>
<td>15.50</td>
<td>24.67</td>
<td>25.24</td>
<td>8.86</td>
<td>26.01</td>
</tr>
<tr>
<td>(0.75,0.75)</td>
<td>16.08</td>
<td>8.81</td>
<td>14.42</td>
<td>14.70</td>
<td>4.87</td>
<td>15.35</td>
</tr>
<tr>
<td>(1.125,1.125)</td>
<td>8.81</td>
<td>4.72</td>
<td>7.88</td>
<td>8.03</td>
<td>2.50</td>
<td>8.49</td>
</tr>
</tbody>
</table>
Linearization

To check for saddle-path stability
To document the evolution of the economy from a before-shock steady state to a post-shock one.
Once the $z(t)$ and $\ell_i(t)$’s are obtained, $\ell(t)$, $\psi(t)$ and $k_i(t)$’s can be obtained. Following $(N + 1)\times(N + 1)$ system is sufficient to obtain the transition path dynamics:

$$
\begin{bmatrix}
\dot{z} \\
\dot{\ell}_1 \\
\vdots \\
\dot{\ell}_N
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial \dot{z}}{\partial z} & \frac{\partial \dot{z}}{\partial \ell_1} & \cdots & \frac{\partial \dot{z}}{\partial \ell_N} \\
\frac{\partial \dot{\ell}_1}{\partial z} & \frac{\partial \dot{\ell}_1}{\partial \ell_1} & \cdots & \frac{\partial \dot{\ell}_1}{\partial \ell_N} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \dot{\ell}_N}{\partial z} & \frac{\partial \dot{\ell}_N}{\partial \ell_1} & \cdots & \frac{\partial \dot{\ell}_N}{\partial \ell_N}
\end{bmatrix}
\begin{bmatrix}
z(t) - \tilde{z} \\
\ell_1(t) - \tilde{\ell}_1 \\
\vdots \\
\ell_N(t) - \tilde{\ell}_N
\end{bmatrix}
$$
Transition path characterization

- In order to have a stable transition path, one needs to have a number of negative eigenvalues equal to the number of variables persistent to shocks.

- The 6x6 linearized system for $i = 5$:

$$z(t) = \tilde{z} + [z(0) - \tilde{z}] e^{\mu t}$$

$$\ell_i(t) = \tilde{\ell}_i + \nu_i [z(t) - \tilde{z}] \quad \forall i$$

- Where μ is the stable root and the ν_i's are the components of the normalized eigenvector corresponding ℓ_i's.

- Having a combination of high levels of labor income tax progressivity, ϕ_w, and labor income tax schedule, ζ_w, may destabilize the linearized system.
An example of the transition of labor supply

- g increases from 0.05 to 0.08 through a ζ_k shock.
An example of the transition of government size and leisure

- g increases from 0.05 to 0.08 through a combined ζ_k, ζ_w shock.
Responses of welfare distribution under different progressivity levels

- g increases from 0.05 to 0.08 through increased lump-sum taxation.
Conclusion

- Chaterjee and Turnovsky (2012) using flat taxes, increases in public services are accompanied by worsened income distribution. By using progressive taxes to finance government services, this effect can be overcome. Still need to study the parameter space this result holds.
- Capital income tax has the strongest effects on both growth and income inequality.
- It is possible to decrease income and wealth inequality without harming GDP growth by setting a balanced progressivity level. This is accompanied by a high increase in the size of government capital.
- Possible extensions:
 - Heterogenizing the wage rates, i.e. by adding skill heterogeneity or human capital.
 - Dividing government expenditure into its components and heterogenizing in terms of regions or business groups.
 - Adding a political economy framework with disproportionately influential wealthy groups.
Growth and Income Inequality in an Endogenous Growth Model with Public Capital under Progressive Taxation

Murat Koyuncu Alper Ünsal

Bogazici University

CEE Annual Conference - May 17, 2016