Foreign Exchange (FX) Markets
Definition, Functions and Features

- Definition: A market where national currencies are bought and sold

Transfers purchasing power from one currency to another and allows for international transactions.
Facilitates hedging against currency shocks.
Largest market in the world in terms of trade volume (over $5 trillion daily in spot, forward and swaps).
24 hours trading and no trading limit.
No commissions by brokers but bid-ask spread required by dealers.
Definition: A market where national currencies are bought and sold
Transfers purchasing power from one currency to another and allows for international transactions.
Foreign Exchange (FX) Markets
Definition, Functions and Features

- Definition: A market where national currencies are bought and sold
- Transfers purchasing power from one currency to another and allows for international transactions.
- Provides credit for foreign trade
Foreign Exchange (FX) Markets
Definition, Functions and Features

- Definition: A market where national currencies are bought and sold
- Transfers purchasing power from one currency to another and allows for international transactions.
- Provides credit for foreign trade
- Facilitates hedging against currency shocks
Foreign Exchange (FX) Markets
Definition, Functions and Features

- Definition: A market where national currencies are bought and sold
- Transfers purchasing power from one currency to another and allows for international transactions.
- Provides credit for foreign trade
- Facilitates hedging against currency shocks
- Largest market in the world in terms of trade volume (over $5 trillion daily in spot, forward and swaps)
Definition: A market where national currencies are bought and sold
Transfers purchasing power from one currency to another and allows for international transactions.
Provides credit for foreign trade
Facilitates hedging against currency shocks
Largest market in the world in terms of trade volume (over $5 trillion daily in spot, forward and swaps)
24 hours trading and no trading limit
Foreign Exchange (FX) Markets
Definition, Functions and Features

- Definition: A market where national currencies are bought and sold
- Transfers purchasing power from one currency to another and allows for international transactions.
- Provides credit for foreign trade
- Facilitates hedging against currency shocks
- Largest market in the world in terms of trade volume (over $5 trillion daily in spot, forward and swaps)
- 24 hours trading and no trading limit
- No commissions by brokers but bid-ask spread required by dealers
International Transactions

- Occur between individuals, firms, governments, international agencies.
Occur between individuals, firms, governments, international agencies.

Trade: Turkish firm sells a good to a US firm. Either the US firm pays in TL by converting $ into TL or pays in $ and the Turkish firm converts it to TL. Trade practice of exporting Turkish firms: get paid in foreign currency if it is Euro or $ otherwise TL.
International Transactions

- Occur between individuals, firms, governments, international agencies.
- Trade: Turkish firm sells a good to a US firm. Either the US firm pays in TL by converting $ into TL or pays in $ and the Turkish firm converts it to TL. Trade practice of exporting Turkish firms: get paid in foreign currency if it is Euro or $ otherwise TL.
- Foreign Direct Investment (FDI). Example: US definition: Foreign Direct Investment is defined as whenever a US citizen, organization, or affiliated group takes an interest of 10 percent or more in a foreign business entity. It includes setting up a business, buying an office block etc.
Portfolio Investments: This is an investment by individuals, firms or public bodies (ex. national and local governments) in foreign financial instruments. Foreign financial instruments include government bonds and foreign stock.
Portfolio Investments: This is an investment by individuals, firms or public bodies (ex. national and local governments) in foreign financial instruments. Foreign financial instruments include government bonds and foreign stock.

The biggest difference between FDI and Foreign Portfolio Investment is that Foreign Portfolio Investment is not associated with a significant equity stake or in other words management privileges.
Portfolio Investments: This is an investment by individuals, firms or public bodies (ex. national and local governments) in foreign financial instruments. Foreign financial instruments include government bonds and foreign stock.

The biggest difference between FDI and Foreign Portfolio Investment is that Foreign Portfolio Investment is not associated with a significant equity stake or in other words management privileges.

Aid: Humanitarian, Goods and Services, Infrastructure Aid, Debt Relief, Education Aid
Portfolio Investments: This is an investment by individuals, firms or public bodies (ex. national and local governments) in foreign financial instruments. Foreign financial instruments include government bonds and foreign stock.

The biggest difference between FDI and Foreign Portfolio Investment is that Foreign Portfolio Investment is not associated with a significant equity stake or in other words management privileges.

Aid: Humanitarian, Goods and Services, Infrastructure Aid, Debt Relief, Education Aid

Remittances: Ex: Workers Remittances
Portfolio Investments: This is an investment by individuals, firms or public bodies (ex. national and local governments) in foreign financial instruments. Foreign financial instruments include government bonds and foreign stock.

The biggest difference between FDI and Foreign Portfolio Investment is that Foreign Portfolio Investment is not associated with a significant equity stake or in other words management privileges.

Aid: Humanitarian, Goods and Services, Infrastructure Aid, Debt Relief, Education Aid

Remittances: Ex: Workers Remittances

"Foreign" in this context means foreign national or entity established in another country. Ex: Garanti Bank International is a foreign firm.
Types of FX Rate

- Bilateral: Between two countries
Bilateral: Between two countries

Effective or trade-weighted (Multilateral): Weighted by the proportion of each country’s trade volume in total trade volume. TCMB reports two types of Real Effective FX rate (vs. Developed and vs. Developing Countries)
Types of FX Rate

- **Bilateral**: Between two countries

- **Effective or trade-weighted (Multilateral)**: Weighted by the proportion of each country’s trade volume in total trade volume. TCMB reports two types of Real Effective FX rate (vs. Developed and vs. Developing Countries)

- **Nominal FX Rates**: Actual Rates
Types of FX Rate

- **Bilateral**: Between two countries
- **Effective or trade-weighted (Multilateral)**: Weighted by the proportion of each country’s trade volume in total trade volume. TCMB reports two types of Real Effective FX rate (vs. Developed and vs. Developing Countries)
- **Nominal FX Rates**: Actual Rates
- **Real FX rates**: Adjusted by price differentials in two countries
Bilateral: Between two countries

Effective or trade-weighted (Multilateral): Weighted by the proportion of each country’s trade volume in total trade volume. TCMB reports two types of Real Effective FX rate (vs. Developed and vs. Developing Countries)

Nominal FX Rates: Actual Rates

Real FX rates: Adjusted by price differentials in two countries

Real Effective FX rates: Adjusted by price differentials in the set of trade partners
Real FX Rate is a sign of the degree of competitiveness.
Types of FX Rate

- Real FX Rate is a sign of the degree of competitiveness.
- Spot vs. forward
Types of FX Rate

- Real FX Rate is a sign of the degree of competitiveness.
- Spot vs. forward
- Buying vs. Selling (Bid vs. Ask). Spread = Bid - Ask > 0. Spread increases during weekends, holidays, turbulent times.
Definitions:

- A bilateral spot exchange rate, S_t, is domestic currency price of unit of foreign currency FX, so a rise in S ($S \uparrow$), is a fall in value of domestic currency. (Except for US and UK other than pound vs. dollar)
Definitions:

- A bilateral spot exchange rate, S_t, is domestic currency price of unit of foreign currency FX, so a rise in S ($S \uparrow$), is a fall in value of domestic currency. (Except for US and UK other than pound vs. dollar)

- Cross exchange rate, S_t^{cross} is bilateral exchange rate between two currencies other than Turkish Lira. e.g.
Definitions:

- A bilateral spot exchange rate, \(S_t \), is domestic currency price of unit of foreign currency FX, so a rise in \(S \) (\(S \uparrow \)), is a fall in value of domestic currency. (Except for US and UK other than pound vs. dollar)

- Cross exchange rate, \(S_t^{cross} \) is bilateral exchange rate between two currencies other than Turkish Lira. e.g.

- Cross exchange rate = ratio of two bilateral exchange rates against the TL, \(S_t^{cross} = \frac{S_t^{\epsilon}}{S_t^{\$}} \)
Definitions:

- A bilateral spot exchange rate, S_t, is domestic currency price of unit of foreign currency FX, so a rise in S ($S \uparrow$), is a fall in value of domestic currency. (Except for US and UK other than pound vs. dollar)

- Cross exchange rate, S_t^{cross} is bilateral exchange rate between two currencies other than Turkish Lira. e.g.

- Cross exchange rate = ratio of two bilateral exchange rates against the TL, $S_t^{cross} = S_t^€ / S_t^$.

- Let $S_t^B = Bid$ Rate and $S_t^A = Ask$ Rate.
Definitions:

- A bilateral spot exchange rate, S_t, is domestic currency price of unit of foreign currency FX, so a rise in S ($S \uparrow$), is a fall in value of domestic currency. (Except for US and UK other than pound vs. dollar)

- Cross exchange rate, S_t^{cross} is bilateral exchange rate between two currencies other than Turkish Lira. e.g.

- Cross exchange rate = ratio of two bilateral exchange rates against the TL, $S_t^{cross} = S_t^€ / S_t^\$$

- Let $S_t^B =$ Bid Rate and $S_t^A =$ Ask Rate.

- Suppose the buyer wants to buy $. Dealer asks S_t^A for 1 $ and Buyer asks $1/S_t^A$ for 1TL.
Definitions:

- A bilateral spot exchange rate, S_t, is domestic currency price of unit of foreign currency FX, so a rise in $S_t (S_t \uparrow)$, is a fall in value of domestic currency. (Except for US and UK other than pound vs. dollar)

- Cross exchange rate, S_t^{cross} is bilateral exchange rate between two currencies other than Turkish Lira. e.g.

- Cross exchange rate = ratio of two bilateral exchange rates against the TL, $S_t^{cross} = S_t^\€ / S_t^\$$

- Let $S_t^B = \text{Bid Rate}$ and $S_t^A = \text{Ask Rate}$.

- Suppose the buyer wants to buy $. Dealer asks S_t^A for 1 $ and Buyer asks $1/S_t^A$ for 1TL.

- Suppose the buyer wants to buy TL. Dealer asks $1/S_t^B$ for 1 TL and Buyer asks S_t^B for 1$.

Ozan Hatipoglu (CEE) Open Economy Macroeconomics Spring 2011 7 / 92
Turkish establishments demand $ in exchange for TL in order to import from or invest in USA (and all other international transactions mentioned above)

Total excess demand/supply eliminated instantaneously by exchange rate movement
Demand for FX

- Turkish establishments demand $ in exchange for TL in order to import from or invest in USA (and all other international transactions mentioned above)
- US establishments demand TL in exchange for $ in order to import from or invest in Turkey (and all other international transactions mentioned above)

Total excess demand/supply eliminated instantaneously by exchange rate movement
Demand for FX

- Turkish establishments demand $ in exchange for TL in order to import from or invest in USA (and all other international transactions mentioned above)
- US establishments demand TL in exchange for $ in order to import from or invest in Turkey (and all other international transactions mentioned above)
- Speculators buy or sell TL (sell or buy $)

Total excess demand/supply eliminated instantaneously by exchange rate movement
Equilibrium in FX Market: UK Example

Copeland Ch 1.
Appreciation and Depreciation

- $S \uparrow$: means depreciation
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation

Exception: Real Effective Exchange Rates reported by TCMB
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation
- Exception: Real Effective Exchange Rates reported by TCMB
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation
- Exception: Real Effective Exchange Rates reported by TCMB
- Suppose $S\$ \downarrow$, there are two possibilities:
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation
- Exception: Real Effective Exchange Rates reported by TCMB
- Suppose $S\$ \downarrow$, there are two possibilities:
 - International Value of TL has gone up or TL has appreciated.
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation
- Exception: Real Effective Exchange Rates reported by TCMB
- Suppose $S^\$ \downarrow$, there are two possibilities:
 1. International Value of TL has gone up or TL has appreciated.
 2. US$ vs. TL has gone down. (or Lira gained value against $)
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation

Exception: Real Effective Exchange Rates reported by TCMB

Suppose $S^\$ \downarrow$, there are two possibilities:

1. International Value of TL has gone up or TL has appreciated.
2. US$ vs. TL has gone down. (or Lira gained value against $)

Theorem

If $S^\$ \downarrow$ while all other currencies in terms of TL remain the same

If $S^\$ \downarrow$ while all other currencies in terms of TL
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation
- Exception: Real Effective Exchange Rates reported by TCMB
- Suppose $S\$, there are two possibilities:
 1. International Value of TL has gone up or TL has appreciated.
 2. US$ vs. TL has gone down. (or Lira gained value against $)

Theorem

- If $S\$ \downarrow\ while all other currencies in terms of TL remain the same $\rightarrow 2$
Appreciation and Depreciation

- $S \uparrow$: means depreciation
- $S \downarrow$: means appreciation
- Exception: Real Effective Exchange Rates reported by TCMB
- Suppose $S\$ \downarrow$, there are two possibilities:
 1. International Value of TL has gone up or TL has appreciated.
 2. US$ vs. TL has gone down. (or Lira gained value against $)

Theorem

- If $S\$ \downarrow$ while all other currencies in terms of TL remain the same $\rightarrow 2$
- If $S\$ \downarrow$ while all other currencies in terms of TL $\downarrow \rightarrow 1$
Some Exchange Rate Regimes

1. **Pure float (Flexible Float):** exchange rate at any moment determined by net demand for currency.
Some Exchange Rate Regimes

1. *Pure float (Flexible Float)*: exchange rate at any moment determined by net demand for currency.

2. *Fixed exchange rate*: central bank (CB) intervenes by

Ozan Hatipoglu (CEE)

Open Economy Macroeconomics

Spring 2011
Some Exchange Rate Regimes

1. **Pure float (Flexible Float):** exchange rate at any moment determined by net demand for currency.

2. **Fixed exchange rate:** central bank (CB) intervenes by
 - buying up excess supply of $ with TL (when TL strong, $ weak). This operation adds $ to FX reserves, adds to TL in circulation or

Ozan Hatipoglu (CEE)
Open Economy Macroeconomics
Spring 2011
11 / 92
Some Exchange Rate Regimes

1. **Pure float (Flexible Float):** exchange rate at any moment determined by net demand for currency.

2. **Fixed exchange rate:** central bank (CB) intervenes by
 - buying up excess supply of $ with TL (when TL strong, $ weak). This operation adds $ to FX reserves, adds to TL in circulation or
 - satisfying excess demand for $ by selling $ for TL (when TL weak, $ strong), so as to prevent excess demand /supply affecting the rate. This operation takes $ out of FX reserves, reduces TL in circulation. Sometimes fixed rate regimes are associated with restrictions on FX transactions such as a ban on FX holdings.
Some Exchange Rate Regimes

1. **Pure float (Flexible Float):** exchange rate at any moment determined by net demand for currency.

2. **Fixed exchange rate:** central bank (CB) intervenes by
 - buying up excess supply of $ with TL (when TL strong, $ weak). This operation adds $ to FX reserves, adds to TL in circulation or
 - satisfying excess demand for $ by selling $ for TL (when TL weak, $ strong), so as to prevent excess demand /supply affecting the rate. This operation takes $ out of FX reserves, reduces TL in circulation. Sometimes fixed rate regimes are associated with restrictions on FX transactions such as a ban on FX holdings.

3. **Managed Float (Dirty Float):** CB intervenes at its discretion.
Exchange Rate Regimes

- Pure float \((\Delta CB \text{ reserves}=0) \)
Exchange Rate Regimes

- Pure float ($\Delta \text{CB reserves} = 0$)
- Managed Float ($\Delta \text{CB reserves} \neq 0$)
Exchange Rate Regimes

- Pure float \((\Delta \text{CB reserves}=0) \)
- Managed Float \((\Delta \text{CB reserves}\neq 0) \)
- Target Zone
Pure float \((\Delta \text{CB reserves}=0)\)
- Managed Float \((\Delta \text{CB reserves}\neq 0)\)
- Target Zone
- Fixed
Exchange Rate Regimes

- Pure float \((\Delta CB \text{ reserves}=0) \)
- Managed Float \((\Delta CB \text{ reserves}\neq 0) \)
- Target Zone
- Fixed
- Currency Board (Domestic currency backed 100% by foreign currency)
Exchange Rate Regimes

- Pure float \((\Delta CB \text{ reserves}=0)\)
- Managed Float \((\Delta CB \text{ reserves}\neq 0)\)
- Target Zone
- Fixed
- Currency Board (Domestic currency backed 100\% by foreign currency)
- Full Dollarization
Pure Float

Copeland Ch 1.
Balance of Payments (BOP)

Definition

All transactions between Turkey and the rest of the world (ROW) in a given year. It serves as flow of demand and supply for TL.

It consists of

1. Current Account,
Balance of Payments (BOP)

Definition

All transactions between Turkey and the rest of the world (ROW) in a given year. It serves as flow of demand and supply for TL.

It consists of

1. Current Account,
2. Capital and/or Financial Account
Definition

All transactions between Turkey and the rest of the world (ROW) in a given year. It serves as flow of demand and supply for TL.

It consists of

1. Current Account,
2. Capital and/or Financial Account
Current account (CRA): Here and now. Export receipts (X) as
credits, import payments (M) as debits, net = current account
balance (goods, services including financial services, interest and
dividends, rent, tourism)
BOP Items

- **Current account (CRA):** Here and now. Export receipts \((X) \) as credits, import payments \((M) \) as debits, net = current account balance (goods, services including financial services, interest and dividends, rent, tourism)

- **Visibles (merchandise account):** traded goods, processed goods, repairs on goods, gold, purchase of capital goods such as machinery, aircrafts
BOP Items

- **Current account (CRA):** Here and now. Export receipts (X) as credits, import payments (M) as debits, net = current account balance (goods, services including financial services, interest and dividends, rent, tourism)

1. **Visibles (merchandise account):** traded goods, processed goods, repairs on goods, gold, purchase of capital goods such as machinery, aircrafts

2. **Invisibles (service account):** rights, licenses, insurance, tourism and other intangibles
BOP Items

- **Current account (CRA):** Here and now. Export receipts (X) as credits, import payments (M) as debits, net = current account balance (goods, services including financial services, interest and dividends, rent, tourism)

- **Visibles (merchandise account):** traded goods, processed goods, repairs on goods, gold, purchase of capital goods such as machinery, aircrafts

- **Invisibles (service account):** rights, licenses, insurance, tourism and other intangibles

- **Interests, Profits and Dividends:** rents from capital services, e.g. rental income, interest on deposit accounts, dividend payments on stocks, other profits transfers.
BOP Items

- Current account (CRA): Here and now. Export receipts (X) as credits, import payments (M) as debits, net = current account balance (goods, services including financial services, interest and dividends, rent, tourism)

1. Visibles (merchandise account): traded goods, processed goods, repairs on goods, gold, purchase of capital goods such as machinery, aircrafts

2. Invisibles (service account): rights, licenses, insurance, tourism and other intangibles

3. Interests, Profits and Dividends: rents from capital services, e.g. rental income, interest on deposit accounts, dividend payments on stocks, other profits transfers.

BOP Items (cont’d)

- Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)
BOP Items (cont’d)

- Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)

 - FDI: real estate, buying a Turkish company by foreigners or foreign company by Turkish residents, setting up a factory, purchase of machinery and factory in order to produce within that country.
BOP Items (cont’d)

- Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)

 1. FDI: real estate, buying a Turkish company by foreigners or foreign company by Turkish residents, setting up a factory, purchase of machinery and factory in order to produce within that country.

 2. Portfolio Investment: equities, bonds, securities.

- Change in Official Reserves: \(\Delta CB FX \) reserves

- Balancing Item: Current Account + Capital Account = -Balancing Item

visit http://tcmb.gov.tr/odemedenge/odmain.html for Turkish practice.

Ozan Hatipoglu (CEE)
Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)

1. FDI: real estate, buying a Turkish company by foreigners or foreign company by Turkish residents, setting up a factory, purchase of machinery and factory in order to produce within that country.
2. Portfolio Investment: equities, bonds, securities.
3. Other investment: commercial credit lending by banks, nonbank institutions, individuals, IMF loans.
BOP Items (cont’d)

- Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)

1. FDI: real estate, buying a Turkish company by foreigners or foreign company by Turkish residents, setting up a factory, purchase of machinery and factory in order to produce within that country.

2. Portfolio Investment: equities, bonds, securities.

3. Other investment: commercial credit lending by banks, nonbank institutions, individuals, IMF loans.

4. Change in Official Reserves: ΔCB FX reserves

BOP Items (cont’d)

- Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)
 1. FDI: real estate, buying a Turkish company by foreigners or foreign company by Turkish residents, setting up a factory, purchase of machinery and factory in order to produce within that country.
 2. Portfolio Investment: equities, bonds, securities.
 3. Other investment: commercial credit lending by banks, nonbank institutions, individuals, IMF loans.
 4. Change in Official Reserves: ΔCB FX reserves

- Balancing Item: Current Account + Capital Account = -Balancing Item
BOP Items (cont’d)

- Capital/financial account (CPA): net capital inflows = net purchases of TL by foreigners in order to acquire claims on Turkey residents less net sales of TL by Turkey residents in order to acquire claims on foreigners (Long term including securities – equities, bonds, real estate etc + short term including bank deposits, short term securities)
 1. FDI: real estate, buying a Turkish company by foreigners or foreign company by Turkish residents, setting up a factory, purchase of machinery and factory in order to produce within that country.
 2. Portfolio Investment: equities, bonds, securities.
 3. Other investment: commercial credit lending by banks, nonbank institutions, individuals, IMF loans.
 4. Change in Official Reserves: ΔCB FX reserves

- Balancing Item: Current Account + Capital Account = -Balancing Item

Under pure float:

Total net underlying demand for TL = CRA surplus + CPA surplus

= Basic balance is equated to zero by exchange rate movement, unless
Relationship Between BOP and FX rate regime

- Under pure float:
 Total net underlying demand for TL = CRA surplus + CPA surplus
 = Basic balance is equated to zero by exchange rate movement, unless

- Under fixed rates:
 Government intervenes to fix exchange rate, in which case. Item for 4 in CPA: \(\Delta CB \text{ FX reserves} = \text{CRA} + \text{CPA} \) to prevent basic balance causing exchange rate to move
Prior to 1939: Gold Standard. Change in money supply = Change in gold reserves. Huge increases in gold reserves after 1890. Period described by high inflation, protectionism and competitive devaluation.
Exchange Rates in 20th Century

- Prior to 1939: Gold Standard. Change in money supply = Change in gold reserves. Huge increases in gold reserves after 1890. Period described by high inflation, protectionism and competitive devaluation.

- 1944: Bretton Woods: Fixed FX rate system.

Mechanism of Bretton Woods: Gold Exchange Standard. 1944-68 US $ fixed at 1 oz gold = $35, all other currencies fixed to $ with 1% fluctuation bands, devaluations to correct persistent deficits (Gold Window). Other currencies fixed to dollar. Foundation of IMF to police FX rate system to assure convertibility.

Exchange Rates in 20th Century

- Prior to 1939: Gold Standard. Change in money supply = Change in gold reserves. Huge increases in gold reserves after 1890. Period described by high inflation, protectionism and competitive devaluation.
- 1944: Bretton Woods: Fixed FX rate system.
- Mechanism of Bretton Woods: Gold Exchange Standard. 1944-68 US $ fixed at 1 oz gold = $35, all other currencies fixed to $ with 1% fluctuation bands, devaluations to correct persistent deficits. (Gold Window) Other currencies fixed to dollar. Foundation of IMF to police FX rate system to assure convertibility.
Prior to 1939: Gold Standard. Change in money supply = Change in gold reserves. Huge increases in gold reserves after 1890. Period described by high inflation, protectionism and competitive devaluation.

1944: Bretton Woods: Fixed FX rate system.

Mechanism of Bretton Woods: Gold Exchange Standard. 1944-68 US $ fixed at 1 oz gold = $35, all other currencies fixed to $ with 1% fluctuation bands, devaluations to correct persistent deficits. (Gold Window) Other currencies fixed to dollar. Foundation of IMF to police FX rate system to assure convertibility.

Floating Era 1973 onward managed floats for most convertible currencies at first, but later experiments with limited fixed systems e.g. EMS in Europe, currency boards in Hong Kong, Argentina,
Floating Era 1973 onward managed floats for most convertible currencies at first, but later experiments with limited fixed systems e.g. EMS in Europe, currency boards in Hong Kong, Argentina,

EMS tied to a basket of currency. (DM, Fr) EMU 1998 onward response to failure of fixed exchange rates
Floating Era 1973 onward managed floats for most convertible currencies at first, but later experiments with limited fixed systems e.g. EMS in Europe, currency boards in Hong Kong, Argentina,

EMS tied to a basket of currency. (DM, Fr) EMU 1998 onward response to failure of fixed exchange rates

Increasing importance of Asian exchange rates 2000 onward especially RMB, Won, Rupee (varying degrees of flexibility/convertibility, increasingly linked to $/€/Yen currency basket)
Exchange Rates in Turkey

- 1988 Switch to full convertibility and CB starts managed floating. 5 April 1994. Switch to managed floating with inflation expectations as an anchor.
- Starting from 2000. Target zone with up to 22% bandwidth with inflation target as an anchor.
- Free float with CB intervention compatible with inflation target.
Exchange Rates in Turkey

Exchange Rates in Turkey

1988 Switch to full convertibility and CB starts managed floating
Exchange Rates in Turkey

- 1988 Switch to full convertibility and CB starts managed floating.
- 5 April 1994. Switch to managed floating with inflation expectations as an anchor.
Exchange Rates in Turkey

- 1988 Switch to full convertibility and CB starts managed floating
- 5 April 1994. Switch to managed floating with inflation expectations as an anchor
- Starting from 2000. Target zone with up to 22.4% bandwidth with inflation target as an anchor.
Exchange Rates in Turkey

- 1988 Switch to full convertibility and CB starts managed floating
- 5 April 1994. Switch to managed floating with inflation expectations as an anchor
- Starting from 2000. Target zone with up to 22.% bandwidth with inflation target as an anchor.
- Free float with CB intervention compatible with inflation target.
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
 - Law of One Price
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
 1. Law of One Price
 2. PPP Extensions
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
 1. Law of One Price
 2. PPP Extensions
 1. Harrod-Balassa-Samuelson
Theories about Exchange Rate Determination

Purchasing Power Parity (PPP)

1. Law of One Price
2. PPP Extensions
 1. Harrod-Balassa-Samuelson
 2. Trade Costs (Iceberg) Model
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
 1. Law of One Price
 2. PPP Extensions
 1. Harrod-Balassa-Samuelson
 2. Trade Costs (Iceberg) Model
 3. Incomplete Pass-Through
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
 - Law of One Price
 - PPP Extensions
 - Harrod-Balassa-Samuelson
 - Trade Costs (Iceberg) Model
 - Incomplete Pass-Through

- Uncovered Interest Rate Parity
Theories about Exchange Rate Determination

- Purchasing Power Parity (PPP)
 - **Law of One Price**
 - **PPP Extensions**
 - Harrod-Balassa-Samuelson
 - Trade Costs (Iceberg) Model
 - Incomplete Pass-Through

- Uncovered Interest Rate Parity

- Covered Interest Rate Parity
Law of One Price

Definition

The law of one price: Two goods, if they are identical, must sell for the same price.

- Domestic Economy

- Open Economy

\[P_{I} = P_{P} + S \]

where \(P_{I} \) and \(P_{P} \) are the price of the same good in Istanbul and Paris respectively and \(S \) is the TL/Euro exchange rate.
The law of one price: Two goods, if they are identical, must sell for the same price.

- **Domestic Economy**

 The law of one price in the context of domestic economy – the relationship holds if transaction costs are allowed: e.g.,

\[P_{I} = P_{A} + C \]

where \(P_{I} \) is the price of the same good in Istanbul and \(P_{A} \) is the price of the same good in Ankara respectively and \(C \) is the transaction cost (transportation, local taxes, etc.).

\[P_{I} = S P_{P} + C \]

where \(P_{I} \) is the price of the same good in Istanbul and \(P_{P} \) is the price of the same good in Paris respectively and \(S \) is the TL/Euro exchange rate.
Definition

The law of one price: Two goods, if they are identical, must sell for the same price.

- Domestic Economy
 - The law of one price in the context of domestic economy – the relationship holds if transaction costs are allowed: e.g.,
 - $P_I = P_A + C$ where P_I, P_A is the price of the same good in Istanbul and Ankara respectively and C is the transaction cost (transportation, local taxes, etc.).
Law of One Price

Definition
The law of one price: Two goods, if they are identical, must sell for the same price.

- **Domestic Economy**
 - The law of one price in the context of domestic economy – the relationship holds if transaction costs are allowed: e.g.,
 - \(P_I = P_A + C \) where \(P_I, P_A \) is the price of the same good in Istanbul and Ankara respectively and \(C \) is the transaction cost (transportation, local taxes, etc.).

- **Open Economy**
 - \(P_I = SP_P + C \) where \(P_I, P_P \) is the price of the same good in Istanbul and Paris respectively and \(S \) is the TL/Euro exchange rate.
PPP and Real Exchange Rate

Definition

The PPP relation is given by $P_i = SP_i^*$ for $i = 1, \ldots, N$ where P_i is the domestic price of good i and P_i^* is the foreign price of good i and S is the exchange rate or $P = SP^*$ where P is domestic price index and P^* is the foreign price index.

Definition

The real exchange rate, Q, between two countries is given by $Q = \frac{SP^*}{P}$.

Corollary

If PPP holds then $Q = 1$.
PPP and Inflation

Theorem

If PPP holds then the rate of home currency depreciation rate is equal to difference between home and foreign inflation rates.

Proof.

Taking logarithms and derivatives of both sides of \(P = SP^* \)

\[
\log(P) = \log(S) + \log(P^*) \\
dP/P = dS/S + dP^*/P^* \\
\underbrace{dS/S} = \underbrace{dP/P} - \underbrace{dP^*/P^*}
\]

Depreciation = Inflation - Inflation

In reality PPP fails most of the time.
PPP and Transaction Costs

Let K be a constant that represents the total costs of conducting international trade including tariffs, etc.

$$P = KS^*$$

$$\log(P) = \log(K) + \log(S) + \log(P^*)$$

Theorem

If trade costs are constant, then they do not affect the currency depreciation rate

Proof.

Taking the derivative above yields

$$\frac{dS}{S} = \frac{dP}{P} - \frac{dP^*}{P^*} - \frac{dK}{K}$$

depreciation = inflation – inflation – change in trade costs

but $dK = 0$
Harrod, Balassa and Samuelson Effect

Definition
The observation that consumer price levels in wealthier countries are systematically higher than in poorer ones (the "Penn effect").

Definition
An economic model predicting the above, based on the assumption that productivity or productivity growth-rates vary more by country in the traded goods’ sectors than in other sectors (the Balassa–Samuelson hypothesis)

- Workers in some countries have higher productivity than in others.
Harrod, Balassa and Samuelson Effect

Definition

The observation that consumer price levels in wealthier countries are systematically higher than in poorer ones (the "Penn effect").

Definition

An economic model predicting the above, based on the assumption that productivity or productivity growth-rates vary more by country in the traded goods’ sectors than in other sectors (the Balassa–Samuelson hypothesis).

- Workers in some countries have higher productivity than in others.
- Certain labour-intensive jobs such as those in services are less responsive to productivity innovations than others.
Harrod, Balassa and Samuelson Effect

Definition
The observation that consumer price levels in wealthier countries are systematically higher than in poorer ones (the "Penn effect").

Definition
An economic model predicting the above, based on the assumption that productivity or productivity growth-rates vary more by country in the traded goods’ sectors than in other sectors (the Balassa–Samuelson hypothesis)

- Workers in some countries have higher productivity than in others.
- Certain labour-intensive jobs such as those in services are less responsive to productivity innovations than others.
- Some of the fixed-productivity sectors are also the ones producing non-transportable goods (for instance haircuts) - this must be the case or the labour intensive work would have been off-shored.
To equalize local wage levels with the (highly productive) Zurich engineers, McDonalds Zurich employees must be paid more than McDonalds Moscow employees, even though the burger production rate per employee is an international constant.
To equalize local wage levels with the (highly productive) Zurich engineers, McDonalds Zurich employees must be paid more than McDonalds Moscow employees, even though the burger production rate per employee is an international constant.

The CPI is made up of:

1. Local goods/services (which are expensive relative to tradables in rich countries)
2. Tradables, which have the same price everywhere
3. The (real) exchange rate is pegged (by the law of one price) so that tradable goods follow PPP but not local goods. PPP holds only for tradable goods. Entirely tradable goods cannot vary greatly in price by location (because buyers can source from the lowest cost location). But most services must be delivered locally (e.g. hairdressing) which makes PPP-deviations sustainable.
4. The Penn effect is that PPP-deviations usually occur in the same direction: where incomes are high, average price levels are typically high.
To equalize local wage levels with the (highly productive) Zurich engineers, McDonalds Zurich employees must be paid more than McDonalds Moscow employees, even though the burger production rate per employee is an international constant.

The CPI is made up of:

- local goods/services (which are expensive relative to tradables in rich countries)

The (real) exchange rate is pegged (by the law of one price) so that tradable goods follow PPP but not local goods. PPP holds only for tradable goods. Entirely tradable goods cannot vary greatly in price by location (because buyers can source from the lowest cost location). But most services must be delivered locally (e.g. hairdressing) which makes PPP-deviations sustainable.

The Penn effect is that PPP-deviations usually occur in the same direction: where incomes are high, average price levels are typically high.
To equalize local wage levels with the (highly productive) Zurich engineers, McDonald's Zurich employees must be paid more than McDonald's Moscow employees, even though the burger production rate per employee is an international constant.

- The CPI is made up of:
- local goods/services (which are expensive relative to tradables in rich countries)
- Tradables, which have the same price everywhere
To equalize local wage levels with the (highly productive) Zurich engineers, McDonalds Zurich employees must be paid more than McDonalds Moscow employees, even though the burger production rate per employee is an international constant.

- The CPI is made up of:
 - local goods/services (which are expensive relative to tradables in rich countries)
 - Tradables, which have the same price everywhere
- The (real) exchange rate is pegged (by the law of one price) so that tradable goods follow PPP (purchasing power parity) but not local goods. PPP holds only for tradable goods. Entirely tradable goods cannot vary greatly in price by location (because buyers can source from the lowest cost location). But most services must be delivered locally (e.g. hairdressing) which makes PPP-deviations sustainable. The Penn effect is that PPP-deviations usually occur in the same direction: where incomes are high, average price levels are typically high.
Goods arbitrage only profitable when price deviation exceeds transactions costs, C, so:

$$\text{If price deviation } \frac{P_1 - P_2}{P_2} < C, \text{ no trade.}$$

$$\text{If price deviation } \frac{P_1 - P_2}{P_2} > C, \text{ trade.}$$

But C differs for each trader and each type of good. When price deviation is large (small), arbitrage is (not) profitable for most traders/goods. In general, larger the price deviation, greater volume of arbitrage and more rapid is real exchange rate adjustment.
Goods arbitrage only profitable when price deviation exceeds transactions costs, C, so:

- If price deviation $P - P^* < C$, no trade.

But C different for each trader and each type of good. When price deviation large (small), arbitrage (not) profitable for most traders/goods.
Goods arbitrage only profitable when price deviation exceeds transactions costs, C, so:

- If price deviation $P - P^* < C$, no trade
- If price deviation $P - P^* > C$, trade.
• Goods arbitrage only profitable when price deviation exceeds transactions costs, C, so:
 - If price deviation $P - P^* < C$, no trade
 - If price deviation $P - P^* > C$, trade.
• But C different for each trader and each type of good
Goods arbitrage only profitable when price deviation exceeds transactions costs, C, so:

- If price deviation $P - P^* < C$, no trade
- If price deviation $P - P^* > C$, trade.

- But C different for each trader and each type of good
- When price deviation large (small), arbitrage (not) profitable for most traders/goods
Goods arbitrage only profitable when price deviation exceeds transactions costs, \(C \), so:

- If price deviation \(P - P^* < C \), no trade
- If price deviation \(P - P^* > C \), trade.

- But \(C \) different for each trader and each type of good
- When price deviation large (small), arbitrage (not) profitable for most traders/goods
- In general, larger the price deviation, greater volume of arbitrage and more rapid is real exchange rate adjustment
Iceberg Model

Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP_C^*}{1 - \tau} \]

where

- \(P_C^* \): price of Brie cheese (produced in France) in France
Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP^*}{1 - \tau} \]

where

- \(P^*_C \): price of Brie cheese (produced in France) in France
- \(P_C \): price of Brie cheese (produced in France) in Turkey
Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP_C^*}{1 - \tau} \]

where

- \(P_C^* \): price of Brie cheese (produced in France) in France
- \(P_C \): price of Brie cheese (produced in France) in Turkey
- \(\tau \): proportion of every unit of goods lost due to shipping cost ("melting iceberg")
Iceberg Model

Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP^*_C}{1 - \tau} \]

where

- \(P^*_C \): price of Brie cheese (produced in France) in France
- \(P_C \): price of Brie cheese (produced in France) in Turkey
- \(\tau \): proportion of every unit of goods lost due to shipping cost ("melting iceberg")

similarly
Iceberg Model

Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP_C^*}{1 - \tau} \]

where

- \(P_C^* \): price of Brie cheese (produced in France) in France
- \(P_C \): price of Brie cheese (produced in France) in Turkey
- \(\tau \): proportion of every unit of goods lost due to shipping cost ("melting iceberg")

similarly

\[P_H = (1 - \tau) SP_H^* \]
Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP^*_C}{1 - \tau} \]

where

- \(P^*_C \): price of Brie cheese (produced in France) in France
- \(P_C \): price of Brie cheese (produced in France) in Turkey
- \(\tau \): proportion of every unit of goods lost due to shipping cost (“melting iceberg”)

similarly

\[P_H = (1 - \tau) \ SP^*_H \]

- \(P^*_H \): price of hazelnut (produced in Turkey) in France
Iceberg Model

Does the importer or the exporter pay the shipping cost?

\[P_C = \frac{SP^*_C}{1 - \tau} \]

where

- \(P^*_C \): price of Brie cheese (produced in France) in France
- \(P_C \): price of Brie cheese (produced in France) in Turkey
- \(\tau \): proportion of every unit of goods lost due to shipping cost ("melting iceberg")

similarly

\[P_H = (1 - \tau) SP^*_H \]

- \(P^*_H \): price of hazelnut (produced in Turkey) in France
- \(P_H \): price of hazelnut (produced in Turkey) in Turkey.
Combining the above

\[\frac{P_H}{P_C} = (1 - \tau)^2 \frac{P_H^*}{P_C^*} \]
Combining the above

\[
\frac{P_H}{P_C} = (1 - \tau)^2 \frac{P^*_H}{P^*_C}
\]

Result: Hazelnuts (Brie) are \((1 - \tau)^2\) % expensive relative to Brie (Hazelnuts) in Turkey (France). Price distortions multiply
Combining the above

\[\frac{P_H}{P_C} = (1 - \tau)^2 \frac{P_H^*}{P_C^*} \]

Result: Hazelnuts (Brie) are \((1 - \tau)^2\)% expensive relative to Brie (Hazelnuts) in Turkey (France). Price distortions multiply.

Incomplete Pass Through: Exporters and/or importers do not reflect changing costs to prices.
Uncovered Interest Rate Parity (UIRP)

- Assume investors are risk neutral, i.e. they are indifferent between a safe bet and a lottery that offer the same expected return.
Uncovered Interest Rate Parity (UIRP)

- Assume investors are risk neutral, i.e. they are indifferent between a safe bet and a lottery that offer the same expected return.
- Let r be the domestic interest rate of a financial instrument with N periods to maturity.
Uncovered Interest Rate Parity (UIRP)

- Assume investors are risk neutral, i.e. they are indifferent between a safe bet and a lottery that offer the same expected return.
- Let r be the domestic interest rate of a financial instrument with N periods to maturity.
- Let r^* be the foreign interest rate of the same financial instrument with N periods to maturity.
Uncovered Interest Rate Parity (UIRP)

- Assume investors are risk neutral, i.e. they are indifferent between a safe bet and a lottery that offer the same expected return.
- Let r be the domestic interest rate of a financial instrument with N periods to maturity.
- Let r^* be the foreign interest rate of the same financial instrument with N periods to maturity.

Definition

In the absence of hedging opportunities, the relationship between domestic and foreign interest rates are given by

$$(1 + r) = \frac{E_t(S_{t+N})}{S_t}(1 + r^*)$$

where $E_t(S_{t+N})$ is the expected spot exchange rate at $t + N$ as of time t.
Ayşe has 10TL. Let $S_t = 1.6(TL/$), $r = 8\%$, $r^* = 5\%(US)$, $E_t(S_{t+1}) = 1.8$. Should Ayşe invest in Turkey or US?
Ayşe has 10TL. Let $S_t = 1.6(TL/\$), \ r = 8\%, \ r^* = 5\%(US)$, $E_t(S_{t+1}) = 1.8$. Should Ayşe invest in Turkey or US?

If Ayse is risk neutral than she will pick the bet with higher return.
Ayşe has 10TL. Let $S_t = 1.6(\text{TL/\$})$, $r = 8\%$, $r^* = 5\%(\text{US})$, $E_t(S_{t+1}) = 1.8$. Should Ayşe invest in Turkey or US?

If Ayse is risk neutral than she will pick the bet with higher return.

$10 \times (1 + 0.08) = 10.8 \text{TL}$ Return from investing in Turkey
Ayşe has 10TL. Let $S_t = 1.6 (TL/$), $r = 8\%$, $r^* = 5\% (US)$, $E_t (S_{t+1}) = 1.8$. Should Ayşe invest in Turkey or US?

If Ayse is risk neutral than she will pick the bet with higher return.

10 $\times (1 + 0.08) = 10.8 TL$ Return from investing in Turkey

10 $\times \frac{1}{1.6} (1 + 0.05) \times 1.8 = 11.813 TL$ Expected Return from investing in US.
Ayşe has 10TL. Let $S_t = 1.6(TL/$), $r = 8\%$, $r^* = 5\%(US)$, $E_t(S_{t+1}) = 1.8$. Should Ayşe invest in Turkey or US?

If Ayse is risk neutral than she will pick the bet with higher return.

10 × (1 + 0.08) = 10.8 TL Return from investing in Turkey

10 × $\frac{1}{1.6} (1 + 0.05) \times 1.8 = 11.813 TL$ Expected Return from investing in US.

Should invest in US
UIRP example (cont’d)

\[
\frac{E_t(S_{t+N})}{S_t} = \frac{(1+r)}{(1+r^*)}, \text{ subtract 1 from both sides}
\]
UIRP example (cont’d)

- \(\frac{E_t(S_{t+N})}{S_t} = \frac{(1+r)}{(1+r^*)} \), subtract 1 from both sides
- \(\frac{E_t(S_{t+N}) - S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = \text{expected depreciation rate} \)

 \[= \Delta S^e \]

 Given \(r^* = 5\% \)
EIRP example (cont’d)

\[\frac{E_t(S_{t+N})}{S_t} = \frac{(1+r)}{(1+r^*)}, \text{ subtract 1 from both sides} \]

\[\frac{E_t(S_{t+N})-S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = \text{expected depreciation rate} \]

\[= \Delta S^e \ldots \text{Given } r^* = 5\% \]
UIRP example (cont’d)

\[
\frac{E_t(S_{t+N})}{S_t} = \frac{(1+r)}{(1+r^*)}, \text{ subtract 1 from both sides}
\]

\[
\frac{E_t(S_{t+N})-S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = \text{expected depreciation rate}
\]

\[
= \Delta S^e \text{....Given } r^* = 5\%
\]

An increase in \(r \) results in either \(E_t(S_{t+N}) \uparrow \) or \(S_t \downarrow \) or both. If long-run equilibrium is fixed \(E_t(S_{t+N}) \), then only \(S_t \downarrow \).
Find the expected spot rate that leaves Ayse indifferent between investing in US and Turkey.
Find the expected spot rate that leaves Ayse indifferent between investing in US and Turkey.

\[E_t(S_{t+\Delta t}) = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times 1.60 = 1.6457 \]
Find the expected spot rate that leaves Ayse indifferent between investing in US and Turkey.

\[E_t(S_{t+N}) = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times 1.60 = 1.6457 \]

An alternative formulation of the UIRP:
Find the expected spot rate that leaves Ayse indifferent between investing in US and Turkey.

\[E_t(S_{t+N}) = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times 1.60 = 1.6457 \]

An alternative formulation of the UIRP:

- Let \(\frac{E_t(S_{t+N}) - S_t}{S_t} = \Delta S^e \)
Find the expected spot rate that leaves Ayse indifferent between investing in US and Turkey.

\[E_t(S_{t+N}) = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times 1.60 = 1.6457 \]

An alternative formulation of the UIRP:

- Let \(\frac{E_t(S_{t+N})-S_t}{S_t} = \Delta S^e \)
- \((1 + r) = (1 + r^*)(1 + \Delta S^e) \) or \((1 + r) = 1 + r^* + \Delta S^e + r^*\Delta S^e \)
Find the expected spot rate that leaves Ayse indifferent between investing in US and Turkey.

\[E_t(S_{t+N}) = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times 1.60 = 1.6457 \]

An alternative formulation of the UIRP:

- Let \(\frac{E_t(S_{t+N})-S_t}{S_t} = \Delta S^e \)
- \((1 + r) = (1 + r^*)(1 + \Delta S^e) \) or \((1 + r) = 1 + r^* + \Delta S^e + r^* \Delta S^e \)
- but \(r^* \Delta S^e \approx 0 \) therefore \(r = r^* + \Delta S^e \) \((UIRP\ approximate\ version)\)
In general, agents demand a reward (risk premium) for the risks they take.
In general, agents demand a reward (risk premium) for the risks they take.

Definition

Risk premium is the anticipated excess return agents demand in return for taking the risk. A *risk averter* requires positive risk premium. A *risk neutral* is willing to undertake the risk for zero risk premium. A *risk lover* is willing to pay a premium in order to take the risk.
In general, agents demand a reward (risk premium) for the risks they take.

Definition

Risk premium is the anticipated excess return agents demand in return for taking the risk. A *risk averter* requires positive risk premium. A *risk neutral* is willing to undertake the risk for zero risk premium. A *risk lover* is willing to pay a premium in order to take the risk.

For a *risk lover* $U(100) < \frac{1}{2} U(150) + \frac{1}{2} U(50)$: convex U
In general, agents demand a reward (risk premium) for the risks they take.

Definition

Risk premium is the anticipated excess return agents demand in return for taking the risk. A *risk averter* requires positive risk premium. A *risk neutral* is willing to undertake the risk for zero risk premium. A *risk lover* is willing to pay a premium in order to take the risk.

- For a *risk lover* \(U(100) < \frac{1}{2} U(150) + \frac{1}{2} U(50) \): convex \(U \)
- For a *risk neutral* \(U(100) = \frac{1}{2} U(150) + \frac{1}{2} U(50) \): linear \(U \)
In general, agents demand a reward (risk premium) for the risks they take.

Definition

Risk premium is the anticipated excess return agents demand in return for taking the risk. A *risk averter* requires positive risk premium. A *risk neutral* is willing to undertake the risk for zero risk premium. A *risk lover* is willing to pay a premium in order to take the risk.

- For a *risk lover* $U(100) < \frac{1}{2} U(150) + \frac{1}{2} U(50)$: convex U
- For a *risk neutral* $U(100) = \frac{1}{2} U(150) + \frac{1}{2} U(50)$: linear U
- For a *risk averse* $U(100) > \frac{1}{2} U(150) + \frac{1}{2} U(50)$: concave U
A forward contract (or a forward) is a non-standardized contract between two parties to buy or sell an asset at a specified future time at a price agreed today. The party agreeing to buy the underlying asset in the future assumes a long position, and the party agreeing to sell the asset in the future assumes a short position. The price agreed upon is called the delivery price, which is equal to the forward price at the time the contract is entered into.
Forward and Futures Contracts

Definition
A forward contract (or a forward) is a non-standardized contract between two parties to buy or sell an asset at a specified future time at a price agreed today. The party agreeing to buy the underlying asset in the future assumes a long position, and the party agreeing to sell the asset in the future assumes a short position. The price agreed upon is called the delivery price, which is equal to the forward price at the time the contract is entered into.

Definition
A futures contract is a standardized financial contract, in which two parties agree to transact a set of standardized financial instruments or physical commodities for future delivery at a particular price. In futures contracts parties can exchange additional property securing the party at gain (margin call) and the entire unrealized gain or loss builds up while the contract is open.
Futures Example

Ali agrees to sell Ayse $10000 at 1.6TL/$ at T+12

Both Ali and Ayse deposit $1000 (1/10th of the total exchange) with the broker.
Futures Example

Ali agrees to sell Ayse $10000 at 1.6TL/$ at T+12

\[\text{Market Forward Rate and Transactions Timeline} \]

\[\text{1.65} \]

\[\text{T} \quad \text{T+1} \quad \text{T+2} \quad \text{T+8} \quad \text{T+12} \]

\[\text{TL/\$ Spot} \]

\[\text{1.61} \]

\[\text{T} \quad \text{T+1} \quad \text{T+2} \quad \text{T+8} \quad \text{T+12} \]

\[\text{Profit Timeline} \]

Ali’s deposit = $10000 \times (1.65 - 1.60) = $500

Ayse’s deposit = $10000 \times (1.65 - 1.60) = $1500
Futures Example

Ali agrees to sell Ayse $10000 at 1.6TL/$ at T+12

Ali’s deposit = $500 + (1.65 - 1.57) x $10000 = $1300
Ayse’s deposit = $1500 - (1.65 - 1.57) x $10000 = $700
Futures Example

Ali agrees to sell Ayse $10000 at 1.6TL/$ at T+12

1.67

T T+1 T+2 T+8 T+12

Market Forward Rate and Transactions Timeline

1.66

T T+1 T+2 T+8 T+12

TL/$ Spot

Ali gets the margin call and is required to increase his deposits by $500 to continue

T T+1 T+2 T+8 T+12

Profit Timeline

Ali’s deposit= $1300-(1.67-1.57)x$10000= $300
Ayse’s deposit= $700+(1.67-1.57)$10000= $1700
Futures Example

Ali agrees to sell Ayse $10000 at 1.6TL/$ at T+12

Transaction Closed. Ayse made $400. She can buy at the spot market if she really needs $.

Ali’s deposit= $800 + (1.67 - 1.64) \times 10000 = $1100
Ayse’s deposit= $1700 - (1.67 - 1.64) \times 10000 = $1400
Ali’s profit= $1100 - $1000 - $500 = $400
Ayse’s profit= $1500 - $1000 = $400
Covered Interest Rate Parity

With hedging opportunities, the relationship between domestic and foreign interest rates are given by

\[(1 + r) = \frac{F_t}{S_t}(1 + r^*)\]

where \(F_t\) is the forward rate at \(t + 1\) as of time \(t\). Note that \(F_t = S_t\) at the maturity date.

\[\frac{F_t}{S_t} = \frac{(1+r)}{(1+r^*)}\] , subtract 1 from both sides
Covered Interest Rate Parity

With hedging opportunities, the relationship between domestic and foreign interest rates are given by

$$(1 + r) = \frac{F_t}{S_t} (1 + r^*)$$

where F_t is the forward rate at $t + 1$ as of time t. Note that $F_t = S_t$ at the maturity date.

- $\frac{F_t}{S_t} = \frac{(1+r)}{(1+r^*)}$, subtract 1 from both sides
- $\frac{F_t - S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = f = \text{forward premium}$
Covered Interest Rate Parity

With hedging opportunities, the relationship between domestic and foreign interest rates are given by

\[(1 + r) = \frac{F_t}{S_t} (1 + r^*)\]

where \(F_t\) is the forward rate at \(t + 1\) as of time \(t\). Note that \(F_t = S_t\) at the maturity date.

- \(\frac{F_t}{S_t} = \frac{(1+r)}{(1+r^*)}\), subtract 1 from both sides
- \(\frac{F_t-S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = f = \text{forward premium}\)
- A forward premium is the proportion by which a country’s forward exchange rate exceeds its spot rate.
Covered Interest Rate Parity

With hedging opportunities, the relationship between domestic and foreign interest rates are given by

\[(1 + r) = \frac{F_t}{S_t} (1 + r^*)\]

where \(F_t\) is the forward rate at \(t + 1\) as of time \(t\). Note that \(F_t = S_t\) at the maturity date.

- \(\frac{F_t}{S_t} = \frac{(1+r)}{(1+r^*)}\), subtract 1 from both sides
- \(\frac{F_t-S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = f = \text{forward premium}\)
- A forward premium is the proportion by which a country’s forward exchange rate exceeds its spot rate.
- Rewriting \((1 + r) = (1 + r^*)(1 + f)\), \(r^*f \approx 0\)
Covered Interest Rate Parity

With hedging opportunities, the relationship between domestic and foreign interest rates are given by

\[(1 + r) = \frac{F_t}{S_t}(1 + r^*)\]

where \(F_t\) is the forward rate at \(t + 1\) as of time \(t\). Note that \(F_t = S_t\) at the maturity date.

- \(\frac{F_t}{S_t} = \frac{(1+r)}{(1+r^*)}\), subtract 1 from both sides
- \(\frac{F_t - S_t}{S_t} = \frac{(1+r)}{(1+r^*)} - 1 = f = \text{forward premium}\)
- A forward premium is the proportion by which a country’s forward exchange rate exceeds its spot rate.
- Rewriting \((1 + r) = (1 + r^*)(1 + f)\), \(r^* f \approx 0\)
- \(r = r^* + f\) (CIRP approximate version)
Borrowing and Lending

- An investor who has a liability (an asset) denominated is said to have a short (long) position in that currency. The net position is given by the difference between long and short positions. There are two types of arbitrages.

Uncovered

Example: investing in US or Turkey for interest arbitrage without forward contracts

1. January 1:
 - Investing in Turkey:
 - Borrow 1.60TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest.
 - Investing in US:
 - Borrow 1.60TL (short TL) at 8%, buy $ at 1.60, deposit (long $) in US for a year with 5% interest.

2. Net position in Turkey
 \[\text{Net position in Turkey} = \text{long} (1.60 \times 1.08) - \text{short} (1.60 \times 1.08) = 0. \]

3. Net position in US
 \[\text{Net position in US} = E_t(S_t + 1) - S_t = 1.60 \times 1.05 - 1.60 = 0. \]

4. December 31:
 - Investing in Turkey:
 - Liquidate deposit (1.60 \times 1.08 = 1.728 TL) pay back loan (1.60 \times 1.08 = 1.728 TL).
 - Net profit = 0 TL
 - Investing in US:
 - Liquidate deposit ($1.10 = $1.05), convert it to TL at the spot price (e.g. 1.70), $1.05 \times 1.70 = 1.785 TL pay back loan (1.60 \times 1.08 = 1.728 TL).
 - Net profit = 1.785 - 1.728 = 0.057 TL.
Borrowing and Lending

- An investor who has a liability (an asset) denominated is said to have a short (long) position in that currency. The net position is given by the difference between long and short positions. There are two types of arbitrages:
 - Uncovered

1 January 1:
- Investing in Turkey:
 - Borrow 1.60 TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest.
- Investing in US:
 - Borrow 1.60 TL (short TL) at 8%, buy $ at 1.60, deposit (long $) in US for a year with 5% interest.

2 Net position in Turkey = long (1.60 x 1.08) - short (1.60 x 1.08) = 0.

3 December 31.
- Investing in Turkey:
 - Liquidate deposit (1.60 x 1.08 = 1.728 TL) and pay back loan (1.60 x 1.08 = 1.728 TL).
 - Net profit = 0
- Investing in US:
 - Liquidate deposit ($1.05), convert it to TL at the spot price (e.g., 1.70), $1.05 x 1.70 = 1.785 TL, pay back loan (1.60 x 1.08 = 1.728 TL).
 - Net profit = 1.785 - 1.728 = 0.057 TL
Borrowing and Lending

- An investor who has a liability (an asset) denominated is said to have a short (long) position in that currency. The net position is given by the difference between long and short positions. There are two types of arbitrages.
- Uncovered
 - example: investing in US or Turkey for interest arbitrage without forward contracts
An investor who has a liability (an asset) denominated in a currency is said to have a short (long) position in that currency. The net position is given by the difference between long and short positions. There are two types of arbitrage:

- **Uncovered**
 - example: investing in US or Turkey for interest arbitrage without forward contracts

January 1: Investing in Turkey: Borrow 1.60TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest. Investing in US: Borrow 1.60TL (short TL) at 8%, buy $ at 1.60, deposit (long $) in US for a year with 5% interest.
Borrowing and Lending

- An investor who has a liability (an asset) denominated is said to have a short (long) position in that currency. The net position is given by the difference between long and short positions. There are two types of arbitrages
 - Uncovered
 - example: investing in US or Turkey for interest arbitrage without forward contracts
 1. January 1: *Investing in Turkey*: Borrow 1.60 TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest. *Investing in US*: Borrow 1.60 TL (short TL) at 8%, buy $ at 1.60, deposit (long $) in US for a year with 5% interest.
 2. *Net position in Turkey* = long (1.60 x 1.08) - short (1.60 x 1.08) = 0. *Net position in US* = \(\frac{E_{t}(S_{t+1})}{S_{t}} \times 1.60 \times 1.05 - (1.60 \times 1.08) \neq 0 \)
An investor who has a liability (an asset) denominated is said to have a short (long) position in that currency. The net position is given by the difference between long and short positions. There are two types of arbitrages:

1. **Uncovered**
 - example: investing in US or Turkey for interest arbitrage without forward contracts
 1. January 1: *Investing in Turkey*: Borrow 1.60TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest. *Investing in US*: Borrow 1.60TL (short TL) at 8%, buy $ at 1.60, deposit (long $) in US for a year with 5% interest.
 2. **Net position in Turkey** = long(1.60×1.08)−short(1.60×1.08) = 0.
 3. **Net position in US** = \(E_t \left(\frac{S_{t+1}}{S_t} \right) \times 1.60 \times 1.05 - (1.60 \times 1.08) \neq 0 \)
 4. December 31. *Investing in Turkey*: Liquidate deposit(1.60TL×1.08 = 1.728TL) pay back loan (1.60×1.08 = 1.728TL) Net profit = 0TL
 Investing in US: Liquidate deposit($1×1.05 = $1.05), convert it to TL at the spot price (e.g. 1.70), $1.05×1.70 = 1.785TL , pay back loan (1.60×1.08 = 1.728TL) Net profit = 1.785 − 1.728 = 0.057TL
Borrowing and Lending (cont’d)

- Covered.
Covered.

example: investing in US or Turkey for interest arbitrage with forward contracts
Covered.

- example: investing in US or Turkey for interest arbitrage with forward contracts

1 January 1: *Investing in Turkey*: Borrow 1.60TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest. *Investing in US*: Short 1.60TL at 8%, buy 1$ at 1.60, deposit (long $) in US for a year with 5% interest and enter a short forward contract in $
Borrowing and Lending (cont’d)

- Covered.

- Example: investing in US or Turkey for interest arbitrage with forward contracts

1. **January 1: Investing in Turkey:** Borrow 1.60TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest. **Investing in US:** Short 1.60TL at 8%, buy 1$ at 1.60, deposit (long $) in US for a year with 5% interest and enter a **short forward contract** in $.

2. **Net position in Turkey** = \(\text{long}(1.60 \times 1.08) - \text{short}(1.60 \times 1.08) = 0 \). **Net position in US** = \(\frac{F_t}{S_t} \times 1.60 \times 1.05 - 1.60 \times 1.08 \) If CIRP holds then \(F_t = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times S_t \) and the net position in US = 0.

Ozan Hatipoglu (CEE)
Open Economy Macroeconomics
Spring 2011
Borrowing and Lending (cont’d)

- Covered.

- example: investing in US or Turkey for interest arbitrage with forward contracts

1. January 1: *Investing in Turkey:* Borrow 1.60 TL (short TL) at 8% and place on one year deposit (long TL) with 8% interest. *Investing in US:* Short 1.60 TL at 8%, buy 1$ at 1.60, deposit (long $) in US for a year with 5% interest and enter a *short forward contract* in $

2. *Net position in Turkey* $= \text{long}(1.60 \times 1.08) - \text{short}(1.60 \times 1.08) = 0$. *Net position in US* $= \frac{F_t}{S_t} \times 1.60 \times 1.05 - 1.60 \times 1.08$ If CIRP holds then $F_t = \frac{(1+r)}{(1+r^*)} S_t = \frac{1.08}{1.05} \times S_t$ and the net position in US $= 0$.

3. December 31. *Investing in Turkey:* Liquidate deposit ($1.60 TL \times 1.08 = 1.728 TL$) pay back loan ($1.60 \times 1.08 = 1.728 TL$). *Net profit* $= 0 TL$. *Investing in US:* Liquidate deposit ($1 \times 1.08 = $1.05), convert it to TL at the forward price ($\frac{1.08}{1.05} \times 1.60 = 1.6457$), $1.05 \times 1.6457 = 1.728$, pay back loan ($1.60 \times 1.08 = 1.728 TL$). *Net profit* $= 1.728 - 1.728 = 0 TL$
In the UIRP example the currency risk associated with investing in Turkey is 0, and in US it is
\[A_t \times (1 + r) - A_t \times (1 + r^*) \times E_t(S_{t+1}) / S_t \] where \(A_t \) is the initial asset.
In the UIRP example the currency risk associated with investing in Turkey is 0, and in US it is
\[A_t \times (1 + r) - A_t \times (1 + r^*) \times E_t(S_{t+1}) / S_t \]
where \(A_t \) is the initial asset.

In the CIRP example the currency risk associated with investing in Turkey and US is 0. In the above example the currency risk is 0 because of the assumption that CIRP holds. In reality,
In the UIRP example the currency risk associated with investing in Turkey is 0, and in US it is
\[A_t \times (1 + r) - A_t \times (1 + r^*) \times E_t(S_{t+1})/S_t \] where \(A_t \) is the initial asset.

In the CIRP example the currency risk associated with investing in Turkey and US is 0. In the above example the currency risk is 0 because of the assumption that CIRP holds. In reality,

- the forward rates reflect the risk premium associated with investing in that particular country.
In the UIRP example the currency risk associated with investing in Turkey is 0, and in US it is $A_t \times (1 + r) - A_t \times (1 + r^*) \times E_t(S_{t+1})/S_t$ where A_t is the initial asset.

In the CIRP example the currency risk associated with investing in Turkey and US is 0. In the above example the currency risk is 0 because of the assumption that CIRP holds. In reality,

- the forward rates reflect the risk premium associated with investing in that particular country.
- While the currency risk is zero, the profits are still uncertain. If $S_{t+1} > F_t$ then investing in US without hedging would have resulted in greater profits.
Real Interest Rate

- Future sacrifice required per unit of extra consumption today
Real Interest Rate

- Future sacrifice required per unit of extra consumption today

Definition

The relationship between real, \(r \), and nominal interest rate, \(R \), is given by
\[
(1 + R) = (1 + r)(1 + \Delta p^e)
\]
or in approximate form by
\[
r = R + \Delta p^e
\]
(Fisher equation) where \(\Delta p^e \) is the expected inflation rate.

Corollary

Take two countries
\[
R_R = (r_r + \Delta p^e_e) + (\Delta p^e_e \Delta p^e_e)
\]
by UIRP
\[
R_R = \Delta S_e
\]
therefore
\[
\Delta S_e = (r_r + \Delta p^e_e)
\]
If there is full capital mobility, \(r = r \)
therefore
\[
\Delta S_e = (\Delta p^e_e \Delta p^e_e)
\]
(PPP in expectations).

Note that \(\Delta p^e \) is unobservable therefore at any given time \(R \) is also unobservable.

Methods of estimating \(\Delta p^e \):
- Use surveys
- Econometric forecast methods.
Real Interest Rate

- Future sacrifice required per unit of extra consumption today

Definition

The relationship between real, r, and nominal interest rate, R, is given by

$$(1 + R) = (1 + r)(1 + \Delta p^e)$$

or in approximate form by

$$r = R + \Delta p^e$$

(Fisher equation) where Δp^e is the expected inflation rate.

Corollary

Take two countries $R - R^* = (r - r^*) + (\Delta p^e - \Delta p^{e*})$ *by UIRP*

$R - R^* = \Delta S^e$ *therefore* $\Delta S^e = (r - r^*) + (\Delta p^e - \Delta p^{e*})$. *If there is full capital mobility, $r = r^*$ therefore* $\Delta S^e = (\Delta p^e - \Delta p^{e*})$ *(PPP in expectations).*
Real Interest Rate

- Future sacrifice required per unit of extra consumption today

Definition

The relationship between real, r, and nominal interest rate, R, is given by $(1 + R) = (1 + r)(1 + \Delta p^e)$ or in approximate form by $r = R + \Delta p^e$ (Fisher equation) where Δp^e is the expected inflation rate.

Corollary

Take two countries $R - R^* = (r - r^*) + (\Delta p^e - \Delta p^{e*})$ *by UIRP* $R - R^* = \Delta S^e$ *therefore* $\Delta S^e = (r - r^*) + (\Delta p^e - \Delta p^{e*})$. *If there is full capital mobility, $r = r^*$ therefore* $\Delta S^e = (\Delta p^e - \Delta p^{e*})$ *(PPP in expectations).*

- Note that Δp^e is unobservable therefore at any given time R is also unobservable.
Real Interest Rate

- Future sacrifice required per unit of extra consumption today

Definition

The relationship between real, r, and nominal interest rate, R, is given by

\[(1 + R) = (1 + r)(1 + \Delta p^e)\]

or in approximate form by

\[r = R + \Delta p^e\]

(Fisher equation) where Δp^e is the expected inflation rate.

Corollary

Take two countries $R - R^* = (r - r^*) + (\Delta p^e - \Delta p^{e*})$ *by UIRP*

\[R - R^* = \Delta S^e\] *therefore* $\Delta S^e = (r - r^*) + (\Delta p^e - \Delta p^{e*})$. *If there is full capital mobility, $r = r^*$ therefore* $\Delta S^e = (\Delta p^e - \Delta p^{e*})$ *PPP in expectations.*

- Note that Δp^e is unobservable therefore at any given time R is also unobservable.
- Methods of estimating Δp^e: Use surveys, or econometric forecast methods.
If all investors are fully informed about market conditions all the time, then prices fully reflect all available information and there are no arbitrage opportunities. For example, if the markets are efficient, $f = \Delta S^e$.
C: Consumption Expenditure on Domestic and Foreign Goods and Services
National Income Accounting in Open Economy

- C: Consumption Expenditure on Domestic and Foreign Goods and Services
- G: Government Expenditure of Domestic and Foreign Goods and Services
National Income Accounting in Open Economy

- **C**: Consumption Expenditure on Domestic and Foreign Goods and Services
- **G**: Government Expenditure of Domestic and Foreign Goods and Services
- **I**: Investment Expenditure on Domestic and Foreign Goods and Services.
National Income Accounting in Open Economy

- **C**: Consumption Expenditure on Domestic and Foreign Goods and Services
- **G**: Government Expenditure of Domestic and Foreign Goods and Services
- **I**: Investment Expenditure on Domestic and Foreign Goods and Services.

1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
National Income Accounting in Open Economy

- **C**: Consumption Expenditure on Domestic and Foreign Goods and Services
- **G**: Government Expenditure of Domestic and Foreign Goods and Services
- **I**: Investment Expenditure on Domestic and Foreign Goods and Services.
 1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
 2. Residential fixed investment spending on housing units by consumers and landlords
National Income Accounting in Open Economy

- \(C \): Consumption Expenditure on Domestic and Foreign Goods and Services
- \(G \): Government Expenditure of Domestic and Foreign Goods and Services
- \(I \): Investment Expenditure on Domestic and Foreign Goods and Services.

1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
2. Residential fixed investment spending on housing units by consumers and landlords
3. Inventory investment: the change in the value of all firms’ inventories
National Income Accounting in Open Economy

- \(C \): Consumption Expenditure on Domestic and Foreign Goods and Services
- \(G \): Government Expenditure of Domestic and Foreign Goods and Services
- \(I \): Investment Expenditure on Domestic and Foreign Goods and Services.
 1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
 2. Residential fixed investment spending on housing units by consumers and landlords
 3. Inventory investment: the change in the value of all firms’ inventories
- \(X \): Exports
National Income Accounting in Open Economy

- **C**: Consumption Expenditure on Domestic and Foreign Goods and Services
- **G**: Government Expenditure of Domestic and Foreign Goods and Services
- **I**: Investment Expenditure on Domestic and Foreign Goods and Services.
 1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
 2. Residential fixed investment spending on housing units by consumers and landlords
 3. Inventory investment: the change in the value of all firms’ inventories
- **X**: Exports
- **M**: Imports (Consumption, Government and Investment Expenditure on Foreign Goods and Services)
National Income Accounting in Open Economy

- **C**: Consumption Expenditure on Domestic and Foreign Goods and Services
- **G**: Government Expenditure of Domestic and Foreign Goods and Services
- **I**: Investment Expenditure on Domestic and Foreign Goods and Services.
 1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
 2. Residential fixed investment spending on housing units by consumers and landlords
 3. Inventory investment: the change in the value of all firms’ inventories
- **X**: Exports
- **M**: Imports (Consumption, Government and Investment Expenditure on Foreign Goods and Services)
- **S**: Savings
National Income Accounting in Open Economy

- **C**: Consumption Expenditure on Domestic and Foreign Goods and Services
- **G**: Government Expenditure of Domestic and Foreign Goods and Services
- **I**: Investment Expenditure on Domestic and Foreign Goods and Services.

1. Business fixed investment spending on plant and equipment that firms will use to produce other goods and services
2. Residential fixed investment spending on housing units by consumers and landlords
3. Inventory investment: the change in the value of all firms’ inventories

- **X**: Exports
- **M**: Imports (Consumption, Government and Investment Expenditure on Foreign Goods and Services)
- **S**: Savings
- **T**: Taxes and **TR**: transfers
Three Approaches To Calculate National Income
Three Approaches To Calculate National Income

1. Expenditure
Three Approaches To Calculate National Income

1. Expenditure
2. Income
Three Approaches To Calculate National Income

1. Expenditure
2. Income
3. Production
Expenditure Approach

- Households, Business, Government and Foreign Sector Expenditures.

National Income Identity in an open economy is given by:

\[Y = C + I + G + X - M \]

where \(Y \) is gross domestic product. \(M \) are imports, subtracted to prevent double counting.

\[S_{pri} = Y_d - C \]

\(C \) is private savings where \(Y_d \) is the disposable income.

\[Y_d = Y - T + TR \]

\(T \) is taxes collected by the government, \(TR \) transfers made by the government to private sector.

\[S_{pri} + I_{\{z\}} = G_{\{z\}} + TR_{\{z\}} + X_{\{z\}} - M_{\{z\}} \]

Private Surplus = Gov. Deficit + CA Balance

Note GDP is a flow variable and not a stock variable.

GDP is product produced within a country's borders; GNP (Gross National Product) is product produced by enterprises owned by a country's citizens.
Expenditure Approach

- Households, Business, Government and Foreign Sector Expenditures.
- National Income Identity in an open economy is given by:
 \[Y = C + I + G + X - M \]
 where \(Y \) is gross domestic product (GDP). Imports, \(M \), are subtracted to prevent double counting.
Expenditure Approach

- Households, Business, Government and Foreign Sector Expenditures.
- National Income Identity in an open economy is given by:
 \[Y = C + I + G + X - M \]
 where \(Y \) is gross domestic product. (\(GDP \)). Imports, \(M \), are subtracted to prevent double counting.
- \(S^{pri} = Y_d - C \) is private savings where \(Y_d \) is the disposable income.
 \(Y_d = Y - T + TR. \) \(T \) is taxes collected by the government, \(TR \) transfers made by the government to private sector.

Note GDP is a flow variable and not a stock variable.
Expenditure Approach

- Households, Business, Government and Foreign Sector Expenditures.
- National Income Identity in an open economy is given by:
 \[Y = C + I + G + X - M \]
 where \(Y \) is gross domestic product (GDP). Imports, \(M \), are subtracted to prevent double counting.
- \(S^{pri} = Y_d - C \) is private savings where \(Y_d \) is the disposable income.
 \(Y_d = Y - T + TR \). \(T \) is taxes collected by the government, \(TR \) transfers made by the government to private sector.
- \(S^{pri} - I = G - T + TR + X - M \)
Expenditure Approach

- Households, Business, Government and Foreign Sector Expenditures.

- National Income Identity in an open economy is given by:
 \[Y = C + I + G + X - M \]
 where \(Y \) is gross domestic product. (GDP). Imports, \(M \), are subtracted to prevent double counting.

- \(S^{pri} = Y_d - C \) is private savings where \(Y_d \) is the disposable income.
 \(Y_d = Y - T + TR \). \(T \) is taxes collected by the government, \(TR \) transfers made by the government to private sector.

- \(S^{pri} - I = G - T + TR + X - M \)

- Private Surplus = Gov. Deficit + CA Balance
Expenditure Approach

- Households, Business, Government and Foreign Sector Expenditures.
- National Income Identity in an open economy is given by:
 \[Y = C + I + G + X - M \]
 where \(Y \) is gross domestic product (GDP). Imports, \(M \), are subtracted to prevent double counting.
- \(S^{pri} = Y_d - C \) is private savings where \(Y_d \) is the disposable income.
 \(Y_d = Y - T + TR \). \(T \) is taxes collected by the government, \(TR \) transfers made by the government to private sector.
- \(S^{pri} - I = \underbrace{G - T + TR}_{\text{Gov. Deficit}} + \underbrace{X - M}_{CA Balance} \)
- Private Surplus = Gov. Deficit + CA Balance
- Note GDP is a \textit{flow} variable and not a \textit{stock} variable.
Households, Business, Government and Foreign Sector Expenditures.

National Income Identity in an open economy is given by:
\[Y = C + I + G + X - M \] where \(Y \) is gross domestic product (GDP). Imports, \(M \), are subtracted to prevent double counting.

\[S^{pri} = Y_d - C \] is private savings where \(Y_d \) is the disposable income. \(Y_d = Y - T + TR \). \(T \) is taxes collected by the government, \(TR \) transfers made by the government to private sector.

\[S^{pri} - I = \underbrace{G - T + TR} + \underbrace{X - M} \]

Private Surplus = Gov. Deficit + CA Balance

Note GDP is a flow variable and not a stock variable.

\(GDP \) is product produced within a country’s borders; \(GNP \) (Gross National Product) is product produced by enterprises owned by a country’s citizens.
The income approach divides GDP according to types of income generated. GDP consists of:

- Wages and salaries
- Corporate profits (dividends, corporate income taxes, undistributed profits)
- Proprietors income (the profits of partnerships and sole owned businesses, like a family restaurant)
- Farm income
- Rent
- Interest (interest payments by businesses only)
- Sales taxes (it is an income but later get paid to the government)
- Depreciation (the amount of capital that has worn out during the year)

GDP = compensation of employees + gross operating surplus + gross mixed income + taxes less subsidies on production and imports
The income approach divides GDP according to types of income generated. GDP consists of:

- Wages and salaries, Corporate profits (dividends, corporate income taxes, undistributed profits), Proprietors income (the profits of partnerships and soley owned businesses, like a family restaurant), Farm income, Rent, Interest (interest payments by businesses only), Sales taxes (it is an income but later get paid to the gov’t), Depreciation (the amount of capital that has worn out during the year).
Income Approach

- The income approach divides GDP according to types of income generated. GDP consists of:

- Wages and salaries, Corporate profits (dividends, corporate income taxes, undistributed profits), Proprietors income (the profits of partnerships and soley owned businesses, like a family restaurant), Farm income, Rent, Interest (interest payments by businesses only), Sales taxes (it is an income but later get paid to the gov’t), Depreciation (the amount of capital that has worn out during the year)

- GDP = compensation of employees + gross operating surplus + gross mixed income + taxes less subsidies on production and imports
The production approach looks at GDP from the standpoint of value added by each input in the production process.
Production Approach

- The production approach looks at GDP from the standpoint of value added by each input in the production process.

Example

1. Farmer buys seeds and produces wheat. Value added\#1 = Sale of Wheat - Value of producing and collecting wheat.

2. Whole retailer packages wheat and transports the wheat to factory. Value added\#2 = Sale of Wheat - Cost of Wheat = Value of packaging and shipping wheat.

\[
\text{GDP} = \sum_{i} \text{Value added}_i
\]
The production approach looks at GDP from the standpoint of value added by each input in the production process.

Example

1. Farmer buys seeds and produces wheat. Value added\#1 = Sale of Wheat = Value of producing and collecting wheat.
2. Whole retailer packages wheat and transports the wheat to factory. Value added\#2 = Sale of Wheat - Cost of Wheat = Value of packaging and shipping wheat.

\[\text{GDP} = \sum_{i} \text{Value added}_i \]
The production approach looks at GDP from the standpoint of value added by each input in the production process

Example

1. Farmer buys seeds and produces wheat. Value added\#1 = Sale of Wheat = Value of producing and collecting wheat

2. Whole retailer packages wheat and transports the wheat to factory
 Value added\#2 = Sale of Wheat - Cost of Wheat = Value of packaging and shipping wheat
Production Approach

The production approach looks at GDP from the standpoint of value added by each input in the production process.

Example

1. Farmer buys seeds and produces wheat. Value added\#1 = Sale of Wheat = Value of producing and collecting wheat.
2. Whole retailer packages wheat and transports the wheat to factory. Value added\#2 = Sale of Wheat - Cost of Wheat = Value of packaging and shipping wheat.
The production approach looks at GDP from the standpoint of value added by each input in the production process.

Example

1. Farmer buys seeds and produces wheat. Value added\(\#1 = \text{Sale of Wheat} = \text{Value of producing and collecting wheat} \)
2. Whole retailer packages wheat and transports the wheat to factory. Value added\(\#2 = \text{Sale of Wheat} - \text{Cost of Wheat} = \text{Value of packaging and shipping wheat} \)
3. Baker cooks bread. Value added\(\#3 = \text{Sale of Bread} - \text{Cost of Wheat} = \text{Value of baking a bread} \)
4. GDP = \(\sum_{i} \text{Value added}_i \)
Examples of GDP component variables

- If a person spends money to renovate a hotel to increase occupancy, the spending represents private investment, but if he buys shares in a consortium to execute the renovation, it is saving. The former is included when measuring GDP (in I), the latter is not. However, when the consortium conducted its own expenditure on renovation, that expenditure would be included in GDP.

- If a hotel is a private home, spending for renovation would be measured as consumption, but if a government agency converts the hotel into an office for civil servants, the spending would be included in the public sector spending, or G.
Examples of GDP component variables

C, I, G, and NX (net exports): If a person spends money to renovate a hotel to increase occupancy, the spending represents private investment, but if he buys shares in a consortium to execute the renovation, it is saving. The former is included when measuring GDP (in I), the latter is not. However, when the consortium conducted its own expenditure on renovation, that expenditure would be included in GDP.

If a hotel is a private home, spending for renovation would be measured as consumption, but if a government agency converts the hotel into an office for civil servants, the spending would be included in the public sector spending, or G.
Expenditure Approach revisited

- Examples of GDP component variables
- C, I, G, and NX (net exports): If a person spends money to renovate a hotel to increase occupancy, the spending represents private investment, but if he buys shares in a consortium to execute the renovation, it is saving. The former is included when measuring GDP (in I), the latter is not. However, when the consortium conducted its own expenditure on renovation, that expenditure would be included in GDP.

- If a hotel is a private home, spending for renovation would be measured as consumption, but if a government agency converts the hotel into an office for civil servants, the spending would be included in the public sector spending, or G.
Expenditure Approach revisited

- If the renovation involves the purchase of a chandelier from abroad, that spending would be counted as C, G, or I (depending on whether a private individual, the government, or a business is doing the renovation), but then counted again as an import and subtracted from the GDP so that GDP counts only goods produced within the country.
Expenditure Approach revisited

- If the renovation involves the purchase of a chandelier from abroad, that spending would be counted as C, G, or I (depending on whether a private individual, the government, or a business is doing the renovation), but then counted again as an import and subtracted from the GDP so that GDP counts only goods produced within the country.
- If a domestic producer is paid to make the chandelier for a foreign hotel, the payment would not be counted as C, G, or I, but would be counted as an export.
Expenditure Approach revisited

\[S_{national} = S^{pri} + S^{gov} = (Y - T) - C + (T - G) = Y - C - G \]
Expenditure Approach revisited

- \(S^{\text{national}} = S^{\text{pri}} + S^{\text{gov}} = (Y - T) - C + (T - G) = Y - C - G \)
- therefore \(S^{\text{national}} - I = CA \)
Expenditure Approach revisited

\[S^{\text{national}} = S^{\text{pri}} + S^{\text{gov}} = (Y - T) - C + (T - G) = Y - C - G \]

- therefore \(S^{\text{national}} - I = CA \)
- \(S^{\text{national}} - I = \text{net foreign investment.} \)
Expenditure Approach revisited

\[S^{national} = S^{pri} + S^{gov} = (Y - T) - C + (T - G) = Y - C - G \]

therefore \(S^{national} - I = CA \)

\(S^{national} - I \) = net foreign investment.

Is \(CA < 0 \) necessarily a bad thing?
Expenditure Approach revisited

- $S^{national} = S^{pri} + S^{gov} = (Y - T) - C + (T - G) = Y - C - G$
- therefore $S^{national} - I = CA$
- $S^{national} - I = \text{net foreign investment}$.
- Is $CA < 0$ necessarily a bad thing?
- Comparison between ability to consume more today and paying more later.
Expenditure Approach revisited

\[S^{national} = S^{pri} + S^{gov} = (Y - T) - C + (T - G) = Y - C - G \]

therefore \[S^{national} - I = CA \]

\[S^{national} - I = \text{net foreign investment.} \]

Is \(CA < 0 \) necessarily a bad thing?

Comparison between ability to consume more today and paying more later.

\[S^{pri} \ vs. \ S^{gov} \]
Expenditure Approach revisited

- \(S^{national} = S^{pri} + S^{gov} = (Y - T) - C + (T - G) = Y - C - G \)
- therefore \(S^{national} - I = CA \)
- \(S^{national} - I \) = net foreign investment.
- Is \(CA < 0 \) necessarily a bad thing?
- Comparison between ability to consume more today and paying more later.
- \(S^{pri} \) vs. \(S^{gov} \)
- Decisions on \(S^{gov} \) makes taxpayers part of the deal!
Defining Variables of Interest

- Assumptions

\[B = X(Q) M(Q, y) \]

where \(Q = SP \) and \(\frac{\partial B}{\partial Q} > 0 \), \(\frac{\partial B}{\partial y} < 0 \), \(S(y, r) \), \(\frac{\partial S}{\partial y} > 0 \), \(\frac{\partial S}{\partial r} > 0 \), \(I(r) \), \(\frac{\partial I}{\partial r} < 0 \), \(G + TR \) is exogenously given.
Defining Variables of Interest

- Assumptions
- Define $B = X(Q) - M(Q, y)$
Assumptions

Define $B = X(Q) - M(Q, y)$

$B \equiv B(Q, y)$
Defining Variables of Interest

- Assumptions
- Define $B = X(Q) - M(Q, y)$
- $B \equiv B(Q, y)$
- where $Q = \frac{SP^*}{P}$ and $\frac{\partial B}{\partial Q} > 0$, $\frac{\partial B}{\partial y} < 0$
Defining Variables of Interest

- **Assumptions**
- Define $B = X(Q) - M(Q, y)$
- $B \equiv B(Q, y)$
- where $Q = \frac{SP^*}{P}$ and $\frac{\partial B}{\partial Q} > 0$, $\frac{\partial B}{\partial y} < 0$
- $S \equiv S(y, r)$, $\frac{\partial S}{\partial y} > 0$, $\frac{\partial S}{\partial r} > 0$
Assumptions

Define $B = X(Q) - M(Q, y)$

$B \equiv B(Q, y)$

where $Q = \frac{SP^*}{P}$ and $\frac{\partial B}{\partial Q} > 0$, $\frac{\partial B}{\partial y} < 0$

$S \equiv S(y, r)$, $\frac{\partial S}{\partial y} > 0$, $\frac{\partial S}{\partial r} > 0$

$I \equiv I(r)$, $\frac{\partial I}{\partial r} < 0$
Defining Variables of Interest

Assumptions

Define \(B = X(Q) - M(Q, y) \)

\[B \equiv B(Q, y) \]

where \(Q = \frac{SP^*}{P} \) and \(\frac{\partial B}{\partial Q} > 0, \frac{\partial B}{\partial y} < 0 \)

\[S \equiv S(y, r), \frac{\partial S}{\partial y} > 0, \frac{\partial S}{\partial r} > 0 \]

\[I \equiv I(r), \frac{\partial I}{\partial r} < 0 \]

\(G + TR - T \) is exogenously given
\[S(y, r) - I(r) = G + TR - T + B(Q, y) \] (IS curve).
IS Curve

- \(S(y, r) - I(r) = G + TR - T + B(Q, y) \) (IS curve).

Definition

IS curve is the combination of income and interest rate pairs such that the net private savings cover the financing requirements of government and the foreign sector. LEAKAGES \((T + S + M)\) out of the system must equal INJECTIONS \((G + TR + I + X)\) for the circular flow to balance (be in EQUILIBRIUM).
\[S(y, r) - I(r) = G + B(Q, y) \]
\[S(y, r) - I(r) < G + B(Q, y) \]
\[S(y,r) - I(r) = G + B(Q, y) \]
The IS curve is given by the equation:

\[S(y,r) - I(r) = G + B(Q,y) \]

where
- \(S(y,r) \) is the saving function,
- \(I(r) \) is the investment function,
- \(G \) is government spending,
- \(B(Q,y) \) is the balance term.

The IS curve is plotted in the graph with the axes showing the relationship between the interest rate \(r \) and the output \(y \). The curve is downward sloping, indicating that as the interest rate increases, the output decreases, and vice versa.
An increase in Government Expenditure
An increase in Real Exchange Rate.
LM Curve

- Relationship between the demand for money and national income (ignoring the opportunity cost)

\[M_d = kY \]

where \(M_d \) is the demand for money and \(Y \) national income, both measured in nominal terms. \(k \) is a positive constant.
LM Curve

- Relationship between the demand for money and national income (ignoring the opportunity cost)
- \(M_d = kY \)
LM Curve

- Relationship between the demand for money and national income (ignoring the opportunity cost)
- \(M_d = kY \)
- where \(M_d \) is the demand for money and \(Y \) national income, both measured in nominal terms.
Relationship between the demand for money and national income (ignoring the opportunity cost)

- $M_d = kY$
- where M_d is the demand for money and Y national income, both measured in nominal terms.
- k positive constant.
Define nominal national income \(Y \) as follows:
Define nominal national income Y as follows:

$Y = Py$ where y is real income and P is the price level.
Define nominal national income Y as follows:

- $Y = Py$ where y is real income and P is the price level.
- We can also introduce opportunity costs
LM Curve

- Define nominal national income Y as follows:
 - $Y = Py$ where y is real income and P is the price level.
- We can also introduce opportunity costs
 - $\frac{M_d}{P} = ky - lr$
Define nominal national income Y as follows:

$Y = Py$ where y is real income and P is the price level.

We can also introduce opportunity costs

$\frac{M_d}{P} = ky - lr$

or $\frac{M_d}{P} \equiv \frac{M_d}{P}(y, r)$ Note that $\frac{\partial M_d}{\partial y}(y, r) > 0$, $\frac{\partial M_d}{\partial r}(y, r) < 0$
Let M_s be the nominal money supply and $m_s = \frac{M_s}{P}$ be the real money supply.
Let M_s be the nominal money supply and $m_s = \frac{M_s}{P}$ be the real money supply.

Definition

The Equilibrium condition in the money market is given by $m_s = ky - lr$ or $m_s = m(y, r)$.
$\frac{Ms}{P} = ky - lr$
LM Curve

\[r = \frac{Ms}{P} > ky - lr \]

\[y^* \]
The LM Curve is represented by the equation:

$$\frac{Ms}{P} = ky - lr$$

where:
- r is the interest rate,
- y is the income level,
- r^* is the foreign interest rate,
- y^* is the potential income level.

The graph shows the relationship between the interest rate (r) and income (y) with a vertical line at r^* and a horizontal line at y^*. The equation represents the condition under which the money market is in equilibrium.
LM Curve

\[\frac{Ms}{P} = ky - lr \]

LM(Ms/P)
An increase in Money Supply.

\[Ms/P = ky - lr \]

\[LM(M^0s/P) \]

Ms/P > ky - lr
Excess Supply

Ms/P < ky - lr
Excess Demand

\[LM(M^1s/P) \]
Monetary System and the Banking Sector

Central bank

Assets
- Gold and foreign currency reserves
- Lending to government

Liabilities
- Currency issued (‘monetary base’)
- MB

Commercial banks

Assets
- Currency plus deposits with central bank
- Loans advanced to personal and corporate sector

Liabilities
- Deposits by public
- MBb
- D

Consolidated banking sector

Assets
- Gold and foreign currency reserves
- Domestic credit: \(L + LG = \)
- Money supply: \(FX + DC = \)

Liabilities
- Currency in circulation: \(MB - MB^b = \)
- Deposits of public
- Money supply: \(MB^p + D = \)
- \(MB^p \)
- \(D \)
- \(M^p \)
For the Central Bank: $FX + LG = MB$
For the Central Bank: $FX + LG = MB$

For Commercial Banks $MB^b + L = D$, Given D, L is determined by MB_b.

The reserve requirement, RR, is the percentage of Commercial Banks deposits to be held with Central Bank as a precaution or the percent of deposits banks are not allowed to lend.
Monetary System and the Banking Sector

- For the Central Bank: $FX + LG = MB$
- For Commercial Banks $MB^b + L = D$, Given D, L is determined by MB_b.
- The reserve requirement, RR, is the percentage of Commercial Banks deposits to be held with Central Bank as a precaution or the the percent of deposits banks are not allowed to lend.
Monetary System and the Banking Sector

- For the Central Bank: $FX + LG = MB$
- For Commercial Banks: $MB^b + L = D$, Given D, L is determined by MB_b.
- The reserve requirement, RR, is the percentage of Commercial Banks deposits to be held with Central Bank as a precaution or the the percent of deposits banks are not allowed to lend.
- Combining both balance sheets: $FX + LG + MB^b + L = MB + D$
For the Central Bank: \(FX + LG = MB \)

For Commercial Banks \(MB^b + L = D \), Given \(D \), \(L \) is determined by \(MB_b \).

The reserve requirement, \(RR \), is the percentage of Commercial Banks deposits to be held with Central Bank as a precaution or the the percent of deposits banks are not allowed to lend.

Combining both balance sheets \(FX + LG + MB^b + L = MB + D \)

or \(FX + DC = MB^p + D \) where \(DC = L + LG \) is total domestic credit and \(MB^p = MB - MB^b \) is currency circulation.
Control of Money Supply

- \(FX + DC = MB^p + D = \text{Money Supply} = M^s \)
Control of Money Supply

- \[FX + DC = MB^p + D = \text{Money Supply} = M^s \]
- \[\Delta FX + \Delta DC = \Delta M^s \]
Control of Money Supply

- $FX + DC = MB^p + D = \text{Money Supply} = M^s$
- $\Delta FX + \Delta DC = \Delta M^s$
- Money supply can be controlled by Central Bank via changes in

 1. Reserve/Borrowing Requirements (through reserve requirement ratio (DC) and MB^p) or discount interest rate (MB^p)
 2. Open Market Operations (selling and buying Reserves (FX), or via buying and selling Treasury Bills (MB^p))
 3. Public Cash Holding (not really a policy tool but CB may pursue policies to increase confidence in the banking system)
Control of Money Supply

- \(FX + DC = MB^p + D = Money\ Supply = M^s \)
- \(\Delta FX + \Delta DC = \Delta M^s \)
- Money supply can be controlled by Central Bank via changes in
 - Reserve/Borrowing Requirements (through reserve requirement ratio \(DC \) and \(MB^p \)) or discount interest rate \(MB^p \)
 - Open Market Operations (selling and buying Reserves \(FX \), or via buying and selling Treasury Bills \(MB^p \))
 - Public Cash Holding (not really a policy tool but CB may pursue policies to increase confidence in the banking system)
Control of Money Supply

- \(FX + DC = MB^p + D = \text{Money Supply} = M^s \)
- \(\Delta FX + \Delta DC = \Delta M^s \)

Money supply can be controlled by Central Bank via changes in:

1. Reserve/Borrowing Requirements (through reserve requirement ratio \((DC\) and \(MB^p\)) or discount interest rate \((MB^p)\))
2. Open Market Operations (selling and buying Reserves \((FX)\), or via buying and selling Treasury Bills \((MB^p)\))
Control of Money Supply

- $FX + DC = MB^p + D = \text{Money Supply} = M^s$
- $\Delta FX + \Delta DC = \Delta M^s$
- Money supply can be controlled by Central Bank via changes in
 1. Reserve/Borrowing Requirements (through reserve requirement ratio (DC and MB^p) or discount interest rate (MB^p))
 2. Open Market Operations (selling and buying Reserves (FX), or via buying and selling Treasury Bills (MB^p))
 3. Public Cash Holding (not really a policy tool but CB may pursue policies to increase confidence in the banking system)
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.

- control money supply
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.
- control money supply
- managing FX and gold reserves
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.

- control money supply
- managing FX and gold reserves
- setting official interest rates
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.
- control money supply
- managing FX and gold reserves
- setting official interest rates
- lender of last resort
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.
- control money supply
- managing FX and gold reserves
- setting official interest rates
- lender of last resort
- issue currency
Central Bank Roles

- monetary policy (control inflation, economic growth, employment, financial stability)
 - There might be conflicts among roles such as controlling inflation and creating employment or growth.

- control money supply
- managing FX and gold reserves
- setting official interest rates
- lender of last resort
- issue currency
- regulator and supervisor of commercial banks (now BDDK setting capital requirements for banks)
Under pure float: $\Delta FX = 0$ only DC affects M^s, therefore $\Delta DC = \Delta M^s$. M^s is exogenous and S_t is endogenous.
Under pure float: $\Delta FX = 0$ only DC affects M^s, therefore $\Delta DC = \Delta M^s$. M^s is exogenous and S_t is endogenous.

Under fixed rates: $\Delta FX \neq 0$, CA balance-CAP balance determine ΔFX therefore M^s is endogenous and S_t is exogenous and $\Delta S_t = 0$. Under fixed rates independent (independent of exchange rate movements) monetary policy is impossible.
Deriving Aggregate Demand

The equilibrium on the demand side is given by \((y, P)\) pairs such that

\[S(y, r) = I(r) = (G + T) + B(Q, y) \] (IS)

\[M_sP = m(y, r) \] (LM)

where \(Q = SP\). We want to express the equilibrium in \((y, P)\) plane because prices will

...
The equilibrium on the demand side is given by \((y, P)\) pairs such that

\[
S(y, r) - I(r) = (G - T + TR) + B(Q, y) \quad \text{(IS)}
\]
The equilibrium on the demand side is given by \((y, P)\) pairs such that:

1. \(S(y, r) - I(r) = (G - T + TR) + B(Q, y)\) (IS)
2. \(\frac{M_s}{P} = m(y, r)\) (LM)
Deriving Aggregate Demand

The equilibrium on the demand side is given by \((y, P)\) pairs such that

1. \(S(y, r) - I(r) = (G - T + TR) + B(Q, y)\) (IS)
2. \(\frac{M_s}{P} = m(y, r)\) (LM)
3. \(\frac{M_s}{P} = (G - T + TR) + B(Q, y)\) where \(Q = \frac{SP^*}{P}\)

We want to express the equilibrium in \((y, P)\) plane because prices will from the link between aggregae demand and aggregate supply.
Deriving Aggregate Demand

The equilibrium on the demand side is given by \((y, P)\) pairs such that

1. \[S(y, r) - I(r) = (G - T + TR) + B(Q, y) \text{ (IS)} \]
2. \[\frac{M^s}{P} = m(y, r) \text{ (LM)} \]
3. \[\frac{M^s}{P} = (G - T + TR) + B(Q, y) \text{ where } Q = \frac{SP^*}{P} \]

We want to express the equilibrium in \((y, P)\) plane because prices will from the link between aggregate demand and aggregate supply.
Deriving Aggregate Demand (Ex: A reduction in prices)
Deriving Aggregate Demand

\[r^* \]

\[P_0 \]

\[y^0 \]

\[IS(G,Q_1) \]

\[IS(G,Q_0) \]

\[LM(Ms/P_0) \]
Deriving Aggregate Demand

\[r^* \]
\[P_0 \]
\[P_1 \]
\[IS(G, Q_0) \]
\[IS(G, Q_1) \]
\[LM(Ms/P_0) \]
\[LM(Ms/P_1) \]
Deriving Aggregate Demand

\[IS(G, Q_0) \]
\[IS(G, Q_1) \]
\[LM(Ms/P_0) \]
\[LM(Ms/P_1) \]
Policy Analysis: Relaxation of Monetary Policy

- Suppose $M^0_s \uparrow, M^1_s \to M^2_s$ where $M^1_s > M^0_s$
Policy Analysis: Relaxation of Monetary Policy

- Suppose $M_s^0 \uparrow$, $M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$
- $\frac{M_s^1}{P} > ky - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.
Policy Analysis: Relaxation of Monetary Policy

- Suppose $M_s^0 \uparrow, M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$
- $\frac{M_s^1}{P} > ky - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.
- Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_s^1}{P} = ky_0 - lr_1$
Policy Analysis: Relaxation of Monetary Policy

- Suppose $M_s^0 \uparrow$, $M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$
- $\frac{M_s^1}{P} > ky - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.
- **Assumption**: r moves faster than y. If $y = y_0$ is constant than $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_s^1}{P} = ky_0 - lr_1$
- But y_0, r_1 can not be an equilibrium in goods market because:
Policy Analysis: Relaxation of Monetary Policy

- Suppose $M_s^0 \uparrow$, $M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$
- $\frac{M_s^1}{P} > k y - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.
- **Assumption**: r moves faster than y. If $y = y_0$ is constant then $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_s^1}{P} = k y_0 - lr_1$
- But y_0, r_1 can not be an equilibrium in goods market because:
- $S(y_0, r_1) - I(r_1) < G - T + TR + B(Q, y_0)$
Suppose $M_s^0 \uparrow$, $M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$

$\frac{M_s^1}{P} > ky - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.

Assumption : r moves faster than y. If $y = y_0$ is constant than $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_s^1}{P} = ky_0 - lr_1$

But y_0, r_1 can not be an equilibrium in goods market because:

$S(y_0, r_1) - I(r_1) < G - T + TR + B(Q, y_0)$

Therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 > r_1$
Suppose $M_0^s \uparrow$, $M_0^s \rightarrow M_1^s$ where $M_1^s > M_0^s$

$\frac{M_1^s}{P} > ky - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.

Assumption : r moves faster than y. If $y = y_0$ is constant than $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_1^s}{P} = ky_0 - lr_1$

But y_0, r_1 can not be an equilibrium in goods market because:

$S(y_0, r_1) - I(r_1) < G - T + TR + B(Q, y_0)$

Therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 > r_1$

This is a movement on LM. $\frac{M_1^s}{P} = ky_1 - lr_2 = ky_0 - lr_1$
Suppose $M_s^0 \uparrow, M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$

$M_s^1 > ky - lr, \text{ Excess money supply, So quantity of money demanded has to increase, money demanded increases when } r \downarrow \text{ or } y \uparrow \text{ or both.}$

Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_s^1}{P} = ky_0 - lr_1$

But y_0, r_1 can not be an equilibrium in goods market because:

$S(y_0, r_1) - I(r_1) < G - T + TR + B(Q, y_0)$

Therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 > r_1$

This is a movement on $LM. \frac{M_s^1}{P} = ky_1 - lr_2 = ky_0 - lr_1$

No shift in IS curve because

$S(y, r) - I(r) = G - T + TR + B(Q, y). \text{ No exogenous change here.}$
Policy Analysis: Relaxation of Monetary Policy

- Suppose $M_s^0 \uparrow, M_s^0 \rightarrow M_s^1$ where $M_s^1 > M_s^0$
- $\frac{M_s^1}{P} > ky - lr$, : Excess money supply, So quantity of money demanded has to increase, money demanded increases when $r \downarrow$ or $y \uparrow$ or both.

Assumption: r moves faster than y. If $y = y_0$ is constant then $r_1 < r_0$ where r_0 is the original interest rate and $\frac{M_s^1}{P} = ky_0 - lr_1$

- But y_0, r_1 can not be an equilibrium in goods market because:
 - $S(y_0, r_1) - I(r_1) < G - T + TR + B(Q, y_0)$
 - Therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 > r_1$

- This is a movement on LM. $\frac{M_s^1}{P} = ky_1 - lr_2 = ky_0 - lr_1$

- No shift in IS curve because $S(y, r) - I(r) = G - T + TR + B(Q, y)$. No exogenous change here.

- The exact change in r and y is determined by the slopes of IS and LM curves.
Relaxation of Monetary Policy

\[r_0 \quad y^0 \quad P_0 \]

\[r_1 \quad y^1 \]

\[r_2 \]

\[r \]

\[LM(Ms^0/P) \]

\[LM(Ms^1/P) \]

\[IS(G,Q) \]

\[AD^0 \]

\[AD^1 \]
Increase in G

- Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$
Increase in G

- Suppose $G \uparrow, G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.

No shift in LM curve there is no exogenous change. The exact change in r and y is determined by the slopes of IS and LM curves.
Increase in G

- Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
Increase in \(G \)

- Suppose \(G \uparrow, G^0 \rightarrow G^1 \) where \(G^1 > G^0 \)
- \(S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0) \).
- IS curve shifts right. To retain eq., \(r \uparrow \) or \(y \uparrow \) or both.
- \textit{Assumption}: \(r \) moves faster than \(y \). If \(y = y_0 \) is constant then \(r_1 > r_0 \) where \(r_0 \) is the original interest rate and
 \[S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0). \]
 \(I(r_1) < I(r_0) \) crowding out effect.
Increase in G

- Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
- Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.
- But y_o, r_1 can not be an equilibrium in money market because:
Increase in G

- Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
- Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.
- But y_o, r_1 can not be an equilibrium in money market because:
 - $\frac{M_s}{P} > ky_0 - lr_1$ therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 < r_1$
Increase in G

- Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
- Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.
- But y_o, r_1 can not be an equilibrium in money market because:
 - $\frac{M_s}{P} > ky_0 - lr_1$ therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 < r_1$
- This is a movement on IS
Increase in G

- Suppose $G \uparrow, G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
- **Assumption**: r moves faster than y. If $y = y_0$ is constant then $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.
- But y_0, r_1 can not be an equilibrium in money market because:
 - $\frac{M_s}{P} > ky_0 - lr_1$ therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 < r_1$
- This is a movement on IS
- $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0) =$

\[
S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0).
\]
Increase in G

- Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
- Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.
- But y_0, r_1 can not be an equilibrium in money market because: $\frac{M_s}{P} > ky_0 - lr_1$ therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 < r_1$
- This is a movement on IS
- $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0) =$
- $= S(y_1, r_2) - I(r_2) = G^1 - T + TR + B(Q, y_1)$
Increase in G

Suppose $G \uparrow$, $G^0 \rightarrow G^1$ where $G^1 > G^0$

$S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.

IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.

Assumption: r moves faster than y. If $y = y_0$ is constant than $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.

But y_0, r_1 can not be an equilibrium in money market because:

$\frac{M_s}{P} > ky_0 - lr_1$ therefore $y_0 \rightarrow y_1$ where $y_1 > y_0$ and $r_1 \rightarrow r_2$ where $r_2 < r_1$

This is a movement on IS

$S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0) =

= S(y_1, r_2) - I(r_2) = G^1 - T + TR + B(Q, y_1)$

No shift in LM curve there is no exogenous change.
Increase in G

- Suppose $G \uparrow$, $G^0 \to G^1$ where $G^1 > G^0$
- $S(y_0, r_0) - I(r_0) < G^1 - T + TR + B(Q, y_0)$.
- IS curve shifts right. To retain eq., $r \uparrow$ or $y \uparrow$ or both.
- **Assumption**: r moves faster than y. If $y = y_0$ is constant than $r_1 > r_0$ where r_0 is the original interest rate and $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0)$. $I(r_1) < I(r_0)$ crowding out effect.
- But y_o, r_1 can not be an equilibrium in money market because:
 - $\frac{M_s}{P} > ky_0 - lr_1$ therefore $y_0 \to y_1$ where $y_1 > y_0$ and $r_1 \to r_2$ where $r_2 < r_1$
- This is a movement on IS
 - $S(y_0, r_1) - I(r_1) = G^1 - T + TR + B(Q, y_0) =$
 - $= S(y_1, r_2) - I(r_2) = G^1 - T + TR + B(Q, y_1)$
- No shift in LM curve there is no exogenous change.
- The exact change in r and y is determined by the slopes of IS and LM curves.
Increase in G

\[\text{LM}(\text{Ms}/P_0) \]

\[\text{IS}(G_1, Q) \]

\[\text{IS}(G_0, Q) \]

\[P \]

\[y \]

\[r \]

\[y^o \]

Open Economy Macroeconomics

Spring 2011

Ozan Hatipoglu (CEE)
Increase in G

[Diagram showing the effects of an increase in government spending (G) on the economy. The diagram illustrates the shifts in the IS and AD curves, leading to higher interest rates and output levels.]
Firms

Assumptions:

- CRS Production Function \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

First order conditions

1. \(p_t \frac{\partial f(K_t, N_t)}{\partial N_t} = w_t \) or \(MPL = w_t \) (Labor Demand Condition)
2. \(p_t \frac{\partial f(K_t, N_t)}{\partial K_t} = r_t \) or \(MPK = r_t \)
Assumptions:

- **CRS Production Function** \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\begin{align*}
\frac{\partial f(K_t, N_t)}{\partial N_t} & \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\end{align*}
\]
Firms

Assumptions:

- **CRS Production Function** \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor
- \(\frac{\partial f(K_t, N_t)}{\partial N_t} \geq 0, \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0 \)
- Firms operate in a perfectly competitive environment and solve the following problem.
Firms

Assumptions:

- CRS Production Function \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\frac{\partial f(K_t, N_t)}{\partial N_t} \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\]

- Firms operate in a perfectly competitive environment and solve the following problem.

\[
\max_{\{K_t, N_t\}} p_t Y_t - w_t N_t - r_t K_t \quad \text{subject to} \quad Y_t \leq f(K_t, N_t)
\]
Firms

Assumptions:

- **CRS Production Function** \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\begin{align*}
\frac{\partial f(K_t, N_t)}{\partial N_t} & \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\end{align*}
\]

- Firms operate in a perfectly competitive environment and solve the following problem.

\[
\text{max}_{\{K_t, N_t\}} \quad p_t Y_t - w_t N_t - r_t K_t \quad \text{subject to} \quad Y_t \leq f(K_t, N_t)
\]

- First order conditions
Assumptions:

- **CRS Production Function** \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\frac{\partial f(K_t, N_t)}{\partial N_t} \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\]

- Firms operate in a perfectly competitive environment and solve the following problem.

\[
\max_{\{K_t, N_t\}} p_t Y_t - w_t N_t - r_t K_t \quad \text{subject to} \quad Y_t \leq f(K_t, N_t)
\]

- First order conditions

\[
p_t \frac{\partial f(K_t, N_t)}{\partial N_t} = w_t \quad \text{or} \quad MPL = \frac{w_t}{p_t} \quad \text{(Labor Demand Condition)}
\]
Assumptions:

- CRS Production Function: \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\frac{\partial f(K_t, N_t)}{\partial N_t} \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\]

- Firms operate in a perfectly competitive environment and solve the following problem.

\[
\max_{\{K_t, N_t\}} p_t Y_t - w_t N_t - r_t K_t \quad \text{subject to} \quad Y_t \leq f(K_t, N_t)
\]

- First order conditions

 1. \(p_t \frac{\partial f(K_t, N_t)}{\partial N_t} = w_t \) or \(MPL = \frac{w_t}{p_t} \) (Labor Demand Condition)
 2. \(p_t \frac{\partial f(K_t, N_t)}{\partial K_t} = r_t \) or \(MPK = \frac{r_t}{p_t} \)
Firms

Assumptions:

- **CRS Production Function** \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\frac{\partial f(K_t, N_t)}{\partial N_t} \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\]

- Firms operate in a perfectly competitive environment and solve the following problem.

\[
\max_{\{K_t, N_t\}} p_t Y_t - w_t N_t - r_t K_t \quad \text{subject to} \quad Y_t \leq f(K_t, N_t)
\]

- **First order conditions**

 1. \(p_t \frac{\partial f(K_t, N_t)}{\partial N_t} = w_t \) or \(MPL = \frac{w_t}{p_t} \) (Labor Demand Condition)

 2. \(p_t \frac{\partial f(K_t, N_t)}{\partial K_t} = r_t \) or \(MPK = \frac{r_t}{p_t} \)

- As \(N \uparrow \), \(MPL \downarrow \) because of diminishing marginal productivity therefore firms are willing to pay less for an additional worker.
Assumptions:

- **CRS Production Function**: \(Y_t = f(K_t, N_t) \) where \(K_t \) is capital and \(N_t \) is labor

\[
\frac{\partial f(K_t, N_t)}{\partial N_t} \geq 0, \quad \frac{\partial f(K_t, N_t)}{\partial K_t} \geq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial N_t^2} \leq 0, \quad \frac{\partial^2 f(K_t, N_t)}{\partial K_t^2} \leq 0
\]

- Firms operate in a perfectly competitive environment and solve the following problem:

\[
\max_{\{K_t, N_t\}} p_t Y_t - w_t N_t - r_t K_t \text{ subject to } Y_t \leq f(K_t, N_t)
\]

- **First order conditions**

1. \(p_t \frac{\partial f(K_t, N_t)}{\partial N_t} = w_t \) or \(MPL = \frac{w_t}{p_t} \) (Labor Demand Condition)
2. \(p_t \frac{\partial f(K_t, N_t)}{\partial K_t} = r_t \) or \(MPK = \frac{r_t}{p_t} \)

- As \(N \uparrow \), \(MPL \downarrow \) because of diminishing marginal productivity therefore firms are willing to pay less for an additional worker.

- Define Labor Demand as \(w \equiv Pf(N) \)
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
- $\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0$, $\frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0$, $\frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0$, $\frac{\partial^2 U(c_t, l_t)}{\partial l_t^2} \leq 0$
Workers

Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure

 $\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0$

- $\max U(c_t, l_t)$ subject to $P_t^e c_t \leq w_t (1 - l_t)$ and $0 \leq l_t \leq 1$
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 $$\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \frac{\partial^2 U(c_t, l_t)}{\partial l_t^2} \leq 0$$
- $\max_{\{c_t, l_t\}} U(c_t, l_t)$ subject to $P^e_t c_t \leq w_t (1 - l_t)$ and $0 \leq l_t \leq 1$
- $P^e_t = P(P)$ $0 \leq P' \leq 1$
Workers

Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 $$\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial l_t^2} \leq 0$$

- $\max U(c_t, l_t)$ subject to $P^e_t c_t \leq w_t (1 - l_t)$ and $0 \leq l_t \leq 1$

- $P^e_t = P(P)$ $0 \leq P' \leq 1$

- $P' = 0$ no adjustment (extreme Keynesian)
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 \[
 \frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0
 \]
- Maximize $U(c_t, l_t)$ subject to $P^e_t c_t \leq w_t (1 - l_t)$ and $0 \leq l_t \leq 1$
- $P^e_t = P(P)$ $0 \leq P' \leq 1$
- $P' = 0$ no adjustment (extreme Keynesian)
- $P' = 1$ full adjustment (perfect fullsight, neoclassical)
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 \[\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0 \]

- $\max_{\{c_t, l_t\}} U(c_t, l_t)$ subject to $P^e_t c_t \leq w_t (1 - l_t)$ and $0 \leq l_t \leq 1$

- $P^e_t = P(P)$ $0 \leq P' \leq 1$

- $P' = 0$ no adjustment (extreme Keynesian)

- $P' = 1$ full adjustment (perfect fullsight, neoclassical)

- Lagrangian:
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 \[\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial l_t^2} \leq 0 \]
- \[\max_{\{c_t, l_t\}} U(c_t, l_t) \text{ subject to } P^e_t c_t \leq w_t (1 - l_t) \] and $0 \leq l_t \leq 1$
- \[P^e_t = P(P) \quad 0 \leq P' \leq 1 \]
- \[P' = 0 \] no adjustment (extreme Keynesian)
- \[P' = 1 \] full adjustment (perfect fullsight, neoclassical)
- Lagrangian:
 \[L = U(c_t, l_t) + \lambda (w_t (1 - l_t) - P^e_t c_t) \]
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 \[
 \frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0
 \]
- \[
 \max_{\{c_t, l_t\}} U(c_t, l_t) \text{ subject to } P^e_t c_t \leq w_t (1 - l_t) \text{ and } 0 \leq l_t \leq 1
 \]
- $P^e_t = P(P)$ $0 \leq P' \leq 1$
- $P' = 0$ no adjustment (extreme Keynesian)
- $P' = 1$ full adjustment (perfect fullsight, neoclassical)
- Lagrangian:
 \[
 L = U(c_t, l_t) + \lambda (w_t (1 - l_t) - P^e_t c_t)
 \]
 \[
 U_c(c_t, l_t) = \lambda P^e_t
 \]
Workers

Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 \[\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0 \]
- \[
\max_{\{c_t, l_t\}} U(c_t, l_t) \text{ subject to } P^e_t c_t \leq w_t (1 - l_t) \text{ and } 0 \leq l_t \leq 1
\]
- $P^e_t = P(P) \quad 0 \leq P' \leq 1$
- $P' = 0$ no adjustment (extreme Keynesian)
- $P' = 1$ full adjustment (perfect fullsight, neoclassical)
- **Lagrangian:**
 \[L = U(c_t, l_t) + \lambda (w_t (1 - l_t) - P^e_t c_t) \]
 1. $U_c(c_t, l_t) = \lambda P^e_t$
 2. $U_l(c_t, l_t) = \lambda w$
 combining
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure

 \[
 \frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0
 \]

- \[
 \max_{\{c_t, l_t\}} U(c_t, l_t) \text{ subject to } P_t c_t \leq w_t (1 - l_t) \text{ and } 0 \leq l_t \leq 1
 \]

- $P_t^e = P(P)$ \[0 \leq P' \leq 1\]
- $P' = 0$ no adjustment (extreme Keynesian)
- $P' = 1$ full adjustment (perfect fullsight, neoclassical)

Lagrangian:

\[
L = U(c_t, l_t) + \lambda (w_t (1 - l_t) - P_t^e c_t)
\]

1. $U_c(c_t, l_t) = \lambda P_t^e$
2. $U_l(c_t, l_t) = \lambda w$
3. combining

\[
\frac{U_c(c_t, l_t)}{U_l(c_t, l_t)} = \frac{P_t^e}{w}
\]
Assumptions:

- Concave Utility function $U(c_t, l_t)$ where c_t is consumption and l_t is leisure
 $$\frac{\partial U(c_t, l_t)}{\partial c_t} \geq 0, \quad \frac{\partial U(c_t, l_t)}{\partial l_t} \geq 0, \quad \frac{\partial^2 U(c_t, l_t)}{\partial c_t^2} \leq 0, \quad \frac{\partial^2 f(c_t, l_t)}{\partial l_t^2} \leq 0$$
- $\max U(c_t, l_t)$ subject to $P_t^e c_t \leq w_t (1 - l_t)$ and $0 \leq l_t \leq 1$
- $P_t^e = P(P)$, $0 \leq P' \leq 1$
- $P' = 0$ no adjustment (extreme Keynesian)
- $P' = 1$ full adjustment (perfect fullsight, neoclassical)
- Lagrangian:
 $$L = U(c_t, l_t) + \lambda (w_t (1 - l_t) - P_t^e c_t)$$
 1. $U_c(c_t, l_t) = \lambda P_t^e$
 2. $U_l(c_t, l_t) = \lambda w$
 combining
 3. $\frac{U_c(c_t, l_t)}{U_l(c_t, l_t)} = \frac{P_t^e}{w}$
- Define Labor Supply as $w = P_t^e \frac{U_c(c_t, l_t)}{U_l(c_t, l_t)} \equiv P_t^e g(N_t)$ where $N_t = 1 - l_t$
Labor Supply: An increase in prices

\[N_0^s \]

\[N_1^s \]

\[N^* \]

\[W \]

\[N \]